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ABSTRACT
We study interactive video calls between two users, where
at least one of the users is connected over a cellular net-
work. It is known that cellular links present highly-varying
network bandwidth and packet delays. If the sending rate
of the video call exceeds the available bandwidth, the video
frames may be excessively delayed, destroying the interac-
tivity of the video call. In this paper, we present Rebera,
a cross-layer design of proactive congestion control, video
encoding and rate adaptation, to maximize the video trans-
mission rate while keeping the one-way frame delays suffi-
ciently low. Rebera actively measures the available band-
width in real-time by employing the video frames as packet
trains. Using an online linear adaptive filter, Rebera makes
a history-based prediction of the future capacity, and deter-
mines a bit budget for the video rate adaptation. Rebera
uses the hierarchical-P video encoding structure to provide
error resilience and to ease rate adaptation, while maintain-
ing low encoding complexity and delay. Furthermore, Re-
bera decides in real time whether to send or discard an en-
coded frame, according to the budget, thereby preventing
self-congestion and minimizing the packet delays. Our ex-
periments with real cellular link traces demonstrate Rebera
can, on average, deliver higher bandwidth utilization and
shorter packet delays than Apple’s FaceTime.
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1. INTRODUCTION
Advances in networking and video encoding technologies

in the last decade have made the real-time video delivery ap-
plications, including video calls and conferencing [17][9][3],
an integral part of our lives. Despite their popularity in
wired and Wi-Fi networks, real-time video applications have
not found much use over cellular networks. The fundamental
challenge of delivering real-time video over cellular networks
is to simultaneously achieve high-rate and low-delay video
transmission on highly volatile cellular links with rapidly-
changing available bandwidth (ABW), packet delay and loss.
On a cellular link, increasing the video sending rate beyond
what is made available by the PHY and MAC layers leads to
self-congestion, and intolerable packet delays, hence frame
delays. Excessively delayed frames will have to be treated
as lost. On the other hand, a conservative sending rate
clearly leads to the under-utilization of the cellular channel
and consequently a lower quality than what is possible.

The tight design space calls for a joint application and
transport cross-layer design, involving real-time video en-
coding, bitrate control, sending rate adjustment, and error
control. Ideally, the transmitted video rate should closely
track the ABW on the cellular links. However, traditional
reactive congestion control algorithms [30, 2], which adjust
the sending rate through packet loss and/or packet delay in-
formation, are too slow to adapt to the changes in the ABW,
leading to either bandwidth under-utilization or significant
packet delays [27]. It is more preferable to design proactive
congestion control algorithms that calculate the sending rate
based on cellular link ABW forecasts. Meanwhile, for video
adaptation, video encoder can adjust various video encod-
ing parameters, so that the resulting video bitrate matches
the target sending rate determined by the congestion control
algorithm. However, accurate rate control is very challeng-
ing for low-delay encoding, and significant rate mismatch is
often still present with the state-of-the-art video encoders.
In addition, what makes the problem even more challenging
is that the lost and late packets can render not only their
corresponding frames, but also other frames non-decodable
at the receiver. The encoder and the transport layer should
be designed to be error resilient so that lost and late packets
have minimal impact on the decoded video.

In this study, we propose a new real-time video delivery



system, Rebera, designed for cellular networks, where we aim
to maximize the sending rate of the video source and error re-
silience, while keeping the one-way frame delays sufficiently
small. Our system consists of a proactive congestion con-
troller, a temporal layered encoder, and a dynamic frame
selection module. Our proactive congestion controller uses
the video frames themselves to actively measure the current
ABW in real-time, and then employs the well-known linear
adaptive filtering methods [11] to predict the future capacity,
based on the past and present capacity measurements. For
error resilience, we resort to layered encoding, which enables
unequal error protection (UEP). However spatial and quality
layering incurs significant encoding complexity and coding
efficiency loss, making them unattractive for practical de-
ployment. Thus we consider only temporal layering, which
provides a certain level of error resilience even without using
explicit UEP. To minimize the delays for real-time delivery,
we use hierarchical-P (hierP) coding structure for temporal
layering. To address the rate control inaccuracy of the en-
coder, we propose a dynamic frame selection algorithm for
hierarchical-P, where the goal is to select in real-time which
encoded frames to send, subject to a budget determined
by the predicted capacity value. Our frame selection algo-
rithm takes into account quality implications of the layers,
decoding dependencies between the frames, and the smooth-
ness of frame inter-arrivals to maximize the delivered video
quality under the said budget. We have implemented the
complete system, called “Rebera” for real-time bandwidth
estimation and rate adaptation, to evaluate its performance
and compare it with Apple’s FaceTime video call applica-
tion. Our implementation relies on an open source real-time
H.264 video encoder [24], which we have modified to produce
a hierarchical-P stream. As a result, we can directly control
the encoded video rate according to the measured capac-
ity. Thanks to the combination of all these components we
have mentioned, Rebera is able to achieve higher bandwidth
utilization and lower frame delays than FaceTime. In this
study, we do not consider UEP among the temporal layers
and the error resilience aspect of the system. These will be
investigated in future studies.

2. RELATED WORK
Rate adaptation is a key problem for video transmission

over best-effort networks. Most of the previous studies focus
on one-way streaming of live or recorded video, where a few
seconds of video buffering at the receiver can be tolerated.
Due to buffering, a temporary mismatch between the video
rate and the ABW does not directly impact the video play-
back, as long as the buffer does not drain out. The recent
industry trend here is Dynamic Adaptive Streaming over
HTTP (DASH) [20]. Various rate adaptation algorithms
have recently been proposed [6, 22, 13, 29], and some of them
were specifically designed for wireless networks, e.g. [19, 23].

To the contrary, video call involves two-way real-time video
streaming. To facilitate live interaction, video call does not
have the luxury of seconds of video buffering. Consequently,
mismatch between the selected video rate and the ABW
will directly translate into quality degradation of video play-
back, such as long video frame delays, delay jitters and video
freezes. Thus, for a video call, real-time bandwidth estima-
tion and video rate adaptation are more challenging, com-
pared with one-way video streaming.

Sending rate determination, or congestion control, has

been an active area of research for decades. Window-based
congestion control algorithms are the dominant form of con-
gestion control on the Internet, which reactively adjust the
window size, and hence the sending rate according to a
congestion signal. TCP variants such as Tahoe and New
Reno [14] use packet losses, while Vegas [5], FAST [26] and
Compound [21] react to packet round trip times. However,
the additive-increase multiplicative-decrease (AIMD) prob-
ing method used in TCP, along with the retransmission of
every single lost packet in these protocols renders them less
desirable for interactive video calls. TFRC [8] and TCP
Cubic [10] control the sending rate with smaller variations,
however, their delay performances deteriorate in the face
of fast ABW variations. As a result, rate-based congestion
control protocols are dominantly used in commercial video
call applications, such as Microsoft Skype, Google Hangouts
and Apple FaceTime. Nonetheless, these protocols also be-
have reactively when adjusting the sending rate, and there-
fore suffer from the same self-congestion problem over highly
volatile links. Authors of [27] proposed a proactive conges-
tion control scheme for realtime video delivery in cellular
networks. They model cellular links as single-server queues
emptied out by a doubly-stochastic service process. For the
ABW estimation, we, unlike [27], assume no particular time-
evolution model for the link capacity. Furthermore, [27] fo-
cused only on congestion control without considering video
adaptation.

Adapting the video rate in real-time according to the send-
ing rate determined is crucial for a low-delay video applica-
tion. This task is usually handled at the video encoder only.
However, if the rate control is not accurate and the encoded
video rate exceeds the rate constraint, sending every encoded
frame will cause self-congestion. This problem can be allevi-
ated if the video stream has temporal layering, by allowing
the sender to prioritize from lower to higher layers, until the
sending rate stays just below the rate constraint. However,
on-the-fly decision of discarding a higher-layer frame that
was encoded before the more important lower-layer frames
is not trivial, since the sizes of the upcoming encoded frames
are yet unknown. To the best of our knowledge, there is no
published work addressing this problem.

3. PROPOSED SYSTEM OVERVIEW
We examine a real-time video delivery scenario between a

sender and a receiver, where at least one user is connected to
a cellular network (Figure 1). We denote the source device
by S, the destination device by D, and the corresponding
base stations by BS and BD, respectively. We call the di-
rected path from S to D the forward path, and the directed
path from D to S in the reverse direction the backward path.
We assume that the in-network directed path (BS , BD) that
connect the base stations has higher ABW, and constant
queuing and propagation delay. Therefore, the overall ABW
along the forward path (S,BS , BD, D) is equal to the min-
imum of the bandwidths along the cellular uplink (S,BS)
and cellular downlink (BD, D).

According to the queuing model of [27], all packets des-
tined to or sent from a given mobile device that is connected
to a base station are queued up in isolated buffers, which are
located on the mobile device for the uplink and in the base
station for the downlink. These buffers are not shared by
any other flow to or from other users; that is, there is no
cross-traffic in these queues. The backlogged packets leave
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Figure 1: Cellular links between the mobile devices
and their respective base stations are in red.

their respective buffers once they are successfully transmit-
ted over the link. Thus, how fast these buffers are emptied
out directly reflects the capacity of the cellular links, and
consequently the end-to-end ABW.

As for the video stream, we assume that the sender uses
a layered encoder so that it can easily adjust the sending
rate by adjusting the number of video layers transmitted.
Layered coding also enables unequal error protection; i.e., a
basic level of quality can be guaranteed with high likelihood
by providing more protection to the base layer. We consider
only temporal layering to keep the encoding complexity and
overhead at a minimum. In order to minimize the encoding
delay, we further assume that the hierarchical-P structure
(Figure 3) is used to achieve temporal scalability. Starting
with the highest temporal layer, the frames can be discarded
to reduce the video rate. In the example shown in Figure
3, each Group of Picture (GoP) consists of 4 frames, which
leads to three temporal layers (TLs). We assume that the
encoder inserts an I-frame every N frames, and we denote
the time duration covering all N frames from an I-frame
up to but excluding the next I-frame by an “intra-period.”
Then, the time duration T for an intra-period is equal to
N/f , where f is the frame rate of the captured video.

We can now summarize the operation of the proposed sys-
tem. Since rate control is usually performed once per intra-
period in conventional video encoders, we predict the aver-
age ABW for each new intra-period. The prediction is based
on the average ABWs for the past intra-periods, which are
measured by the receiver and fed back to the sender. Specif-
ically, the receiver periodically measures the ABW using the
video frames that arrived within the last T -second window,
and then feeds the result back to the sender. The window
slides forward every ∆ seconds. In order to have as fresh
feedback messages as possible, we have ∆� T . The sender,
in turn, records the most recent measurement, and updates
its value with the arrival of each new measurement. Then,
at the beginning of the next intra-period k, the value of the
most recent measurement is taken as the ABW c̃k−1 mea-
sured during the last intra-period k− 1. This value is input
to an adaptive linear prediction filter, which then updates
its prediction ĉk regarding the ABW during the new intra-
period k using the past bandwidth values c̃k−1, . . . , c̃k−M .
Using this prediction, the sender calculates the bit budget
bk, which is the maximum number of bits that the sender is
allowed to send during this intra-period so that all the data
that have been sent arrive at the receiver until the end of
the intra-period with a high probability. The components of
our design can be seen in Figure 2.
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Figure 2: Proposed Rebera real-time video delivery
system for cellular networks

4. SENDING RATE CONTROL

4.1 Measuring the Available Bandwidth
Packet pair/train methods [18] are well-known active ca-

pacity measurement schemes for finding the minimum capac-
ity along a network path. The performance of these methods
improve if there is no cross-traffic on the links, making them
suitable to measure the cellular link capacity according to
our model. In our system, we propose measuring the av-
erage ABW c(t1, t2) actively at the destination, using the
video frames received in (t1, t2] as packet trains. Using the
video frames as packet trains enables us to directly exploit
the video data flow for capacity measurements and to avoid
sending additional measurement traffic. Specifically, at the
sender side, we first packetize each frame regardless of its
size into p ≥ 2 packets , and then send them together in a
burst. The resulting instantaneous sending rate is likely to
be higher than the instantaneous capacity of the link. As a
result, packets queue up in the bottleneck; i.e. the base sta-
tion buffer for the downlink or the cellular device buffer for
the uplink, where they are transmitted one by one. Then,
at the receiver side, we take capacity measurements {mn},
where the sample mn is obtained by using the arriving video
frame n as a packet train. Let us denote the inter-arrival
time between packet i − 1 and i by ai, and the size of the
packet i by zi. Then, we can calculate the capacity sampled
by frame n as:

mn ,
z2 + · · ·+ zp
a2 + · · ·+ ap

,
Zn
An

. (1)

For any time period (t1, t2], we can estimate the average
capacity c(t1, t2) over this time simply by

c̃(t1, t2) =

∑
n∈N Zn∑
n∈N An

, (2)

where N is the set of all frames that arrived in (t1, t2]. Note
that Eq. (2) is equivalent to taking a weighted average of
all the capacity samples in {mn}, where the sample mn

is weighted in proportion to its measurement duration An
with weight wn = An/

∑
n∈N An. Having completed the av-

erage capacity measurement regarding (t1, t2], the receiver
prepares a small feedback packet and sends it back to the
source. Note that we are ultimately interested in measuring
the ABW ck during (Tk, Tk+1], where Tk denotes the start of
the intra-period k. However, since the sender and receiver
have different clock times in general, the receiver cannot
know when exactly an intra-period starts. Furthermore, the
feedback packets are subject to time-varying delays in the
network. In short, we cannot guarantee that the feedback
packets will arrive at the sender on time for predicting the



capacity of the next intra period. To address this issue, the
receiver measures the average capacity within the last T sec-
onds every ∆ seconds, where ∆� T . Each of these measure-
ments are immediately sent back to the sender. Specifically,
a measurement generated at time t is the average capacity
in (t − T, t], while the next measurement that is generated
at t+ ∆ is the average bandwidth in (t−T + ∆, t+ ∆]. The
sender then uses the latest feedback received before Tk to
predict the ABW in the next intra-period (Tk, Tk+1]. Lastly,
assuming we keep the sending rate below the capacity, our
measurement accuracy depends on the difference between
the sending rate and the capacity of the link. If the send-
ing rate equals, or by any chance, exceeds the capacity, we
would have very high measurement accuracy, but this may
lead to saturated links and long queueing delays, which are
detrimental to video call quality.

Robustness against bursts
It is known that the cellular links occasionally experience
channel outages that may last for up to several seconds,
during which the capacity essentially drops to zero, and the
packets in transit are backlogged in the respective buffers.
As a result, the sender should stop sending any more pack-
ets as soon as an outage is detected. When the outage ends,
all the packets queued up in the buffer are usually trans-
mitted and arrive at the receiver as a burst. If the receiver
uses these packets for capacity measurement, the burst rate,
which is on the order of several Mbps, can severely disrupt
the learning process of the predictor. In order to protect
our system against these bursty measurements, we simply
detect them through the sample measurement duration An.
In our system, we consider a measurement bursty if An < 10
ms. Bursty measurements are simply discarded.

4.2 Predicting the Available Bandwidth
History-based forecast is a popular method for prediction

[12], where the past measurement values are used to deter-
mine an estimate of the future. In this study, we perform
linear prediction for history-based forecast. In particular,
we chose a well-known online linear adaptive filter called
the Recursive Least Squares (RLS) [11]. With each new
capacity measurement regarding the last intra-period, RLS
recursively updates its filter taps of length M , and makes a
prediction for the capacity during the next intra-period. One
of the advantages of the RLS algorithm is that it does not
require a model for its input signal, and performs minimum
least-squares regression [7]. Furthermore, it can adapt to the
time-varying signal statistics through its forgetting factor λ,
which serves to exponentially discount the weight of the past
observations, without any need for a time-evolution model
for the system. The notation regarding the RLS algorithm
are summarized in Table 1.

The periodic prediction procedure is as follows. At t =
Tk+1, which is the end of the intra-period k, the most recent
capacity measurement received by the sender is taken as c̃k,
that is, the average ABW during the intra-period k. Then,
the gain vector g(k) and the a priori prediction error εk
are calculated, which are then used to update the filter tap
vector w(k). At this point, the linear prediction for ck+1 is
simply

ĉk+1 = wT (k)c(k). (3)

The step concludes by updating the inverse of the empiri-

Table 1: Notation regarding the RLS predictor
M number of filter taps
λ forgetting factor parameter
θ initializer parameter for P
w(k) filter tap vector of length M
P (k) inverse of empirical autocorrelation matrix, M ×M
g(k) gain vector of length M
c̃k measured capacity
c(k) vector of M most recently measured capacity values
εk a priori prediction error

cal autocorrelation matrix of the measured capacities. The
overall procedure is summarized in Algorithm 1.

Algorithm 1 Recursive Least Squares

1: P (0) = θ−1I,w(0) = 0, c(k) = 0 . Initialization
2: for all intra-period k ≥ 1 do

3: g(k) = λ−1P (k−1)c(k−1)

1+λ−1cT (k−1)P (k−1)c(k−1)

4: εk = c̃k −wT (k − 1)c(k − 1)
5: w(k) = w(k − 1) + εkg(k)
6: P (k) = λ−1[P (k − 1)− g(k)cT (k − 1)P (k − 1)]
7: ĉk+1 = wT (k)c(k)
8: end for

4.3 Determining the Sending Rate
Our ultimate goal is to ensure that all the frames sent

during an intra-period finish their transmission before the
start of the next one. In other words, we aim to have each
I-frame encounter empty buffers with high probability. Let
us denote our sending rate in the intra-period k+1 by rk+1.
We determine rk+1 such that the probability to exceed the
capacity ck+1 is low; that is,

Pr(ck+1 < rk+1) = δ, (4)

where δ is a small tolerance parameter that characterizes
our tolerance to frequent ABW overshoots. Let εk+1 denote
the ratio of the actual capacity to the prediction obtained
from the RLS algorithm, i.e, εk+1 = ck+1/ĉk+1. Then, we
can rewrite Eq. (4) as

Pr (εk+1ĉk+1 < rk+1) = Pr (εk+1 < uk+1) = δ, (5)

where uk+1 , rk+1/ĉk+1 is referred to as safety coefficient.
This means that, for a given δ value, rk+1 should be set by
scaling the prediction ĉk+1 by uk+1, the δ-quantile of εk+1.
In Rebera, we set δ = 0.05, and calculate the running 5-
percentile of εk+1 with a moving window [4].

Handling backlogged and lost packets
Note that, keeping the sending rate below the ABW can-
not be guaranteed, even with the safety margin uk, leading
to occasional packet backlogs. If we do not consider the
backlogged packets while determining the sending rate, the
total number of bytes backlogged in the buffers accumulate
in time. In order to address this issue, the sender, through
information fed back by the receiver, estimates the number
qk of bytes still in the buffers at the end of the intra-period
k, by subtracting the total number of bytes received at the
receiver from the total number of bytes sent so far. However,
in case of packet losses, qk would keep growing in time, since



lost packets never arrive at the receiver. In order to account
for the losses, we assume that the packets arrive at the desti-
nation in the order of their sequence numbers. To detect the
number of lost bytes, we insert in each packet header the to-
tal number of bytes sent so far. Then, upon receiving a new
packet, the receiver simply subtracts the number of bytes
it has received so far from this number. The result is the
number of bytes lost, which is fed back to the sender, along
with the number of bytes received. The sender then deter-
mines qk by taking the difference between the total number
of bytes sent and the total number of bytes received and lost.
Out-of-order packet deliveries will introduce only temporary
errors to our estimates: after the delayed packets arrive at
the receiver, our algorithm will automatically correct these
errors in the next estimate. Combining all, we set the bit
budget bk+1 for the intra-period k + 1 as

bk+1 = (ĉk+1 × uk+1)T − qk, (6)

where T is the intra-period duration. This way, we expect
the network not only can finish the transmission of all video
frames in intra-period k + 1, but also can clean up the cur-
rently backlogged packets qk by the end of intra-period k+ 1.

GoP GoP

I0

P1

P2

P3

P4

P5 P7

I8
P6

time

Intra-period

Figure 3: Hierarchical-P prediction. Blue arrows
indicate the reference frames used to predict the
frames being coded. In this example, N=8, G=4,
TL0:[I0, P4]; TL1:[P2, P6]; TL2:[P1, P3, P5, P7]

5. REAL-TIME FRAME SELECTION FOR
HIERARCHICAL-P VIDEO

Video rate control is crucial for real-time applications over
networks with time-varying bandwidth. However, accurate
rate control is very challenging, especially in the very low-
delay scenarios, where look-ahead and multi-pass encoding
are not suitable. In spite of the extensive research in this
area [16], significant mismatch between the target and actual
bitrate over an intra-period can still occur [16]. For example,
when using the well-designed x264 encoder [24], we have
observed up to 25% rate mismatch in the presence of sudden
motion when the video is coded using the IPPP, as well as
the hierarchical-P structure. In case of rate mismatch, if
the video is coded with the IPPP structure, all remaining
frames will have to be discarded once the target budget for
an intra-period is used up. When this happens early in the
intra-period, the receiver experiences a relatively long freeze.

To remedy this problem, we propose to use a temporal
layered encoder with the hierarchical-P coding structure, so
that the sending rate can be adjusted by skipping the higher
layer frames, without incurring additional encoding delay or
complexity. Figure 3 shows an example prediction structure

for the hierarchical-P encoding, which yields three tempo-
ral layers. We propose a frame selection scheme that either
discards or sends each encoded frame, subject to the given
bit budget bk and frame dependencies. We assume that the
video encoder runs its own rate control algorithm, but may
not meet the bit budget per intra-period accurately. When
the encoded bitrate exceeds the budget, an encoded frame
may be dropped by the frame selection scheme so that the
actual sending rate never exceeds the predicted bandwidth
for an intra-period. The benefit of using the hierarchical-P
structure is that the delivered video has more evenly-spread
frames, whereas the IPPP structure can lead to a very jittery
video when some frames are dropped. With the frame se-
lection module outside the encoder, the encoder rate control
can be less conservative. This, in turn, can lead to higher
bandwidth utilization.

5.1 Dynamic Frame Selection
Frame selection is ultimately about allocating the budget

for more important (lower layer) frames. Higher layer frames
can be sent only if there is available bit budget after sending
the lower layer frames. However, to minimize the delays,
the decision to either send or discard a given frame must
be made right after it is encoded, without knowing future
frame sizes. For example, in Figure 3, we cannot wait to see
if we can send P4 first, followed by P2 and then P1. Rather,
we have to determine whether we send P1 as soon as P1
arrives. If the future frames from lower layers are large,
sending frames from a current higher layer may preclude
the sending of upcoming lower layer frames. On the other
hand, dropping frames from higher layers when the future
lower layer frames are small would underutilize the ABW.

Given an intra-period, let us label each frame with its ap-
pearance order, and denote the size and the temporal layer
of the frame n by sn and `n, respectively. Our goal is to
decide, for each encoded frame n, to either send or discard
it, such that the total number of frames sent at the end of
the intra-period is maximized, while the mean and the vari-
ance of the time gap between the selected frames are kept
small. We start our frame selection procedure by estimating
frame size for each temporal layer, in order to make decisions
considering the future frames. We then continue by ordering
the frames in this intra-period based on their layer numbers,
starting with the lowest layer, since the higher layer frames
cannot be decoded with the lower layers. We denote this
priority order by an ordered list π. For each newly arriving
frame n, we trim π into πn by excluding the past frames
for which a decision has already been made, and the future
frames that cannot be decoded at the receiver due to the pre-
viously discarded frames. πn is basically the priority order
among the eligible frames left. Next, we update the frame
size estimations, as well as our estimation for the remaining
bit budget. Then, we create a set En of frames that we ex-
pect to send according to our frame size and the remaining
bit budget estimations, by greedily picking frames starting
from the first frame in πn. We stop picking the frames when
the total estimated size of the frames picked reaches the es-
timated bit budget. Finally, if frame n is in the set En, we
send it; otherwise it is discarded.

For frame size estimation, we assume that the frame sizes
in the same temporal layer will be similar. Therefore, we
keep a frame size estimate ŝ` for each layer `. In this study,
we use an exponentially weighted moving average (EWMA)



filter with parameter γ for estimating the size of future
frames in layer l using the actual sizes of the past coded
frames in this layer. Note that for the base layer, we apply
the above method only to the successive P-frames as the I-
frame size is much larger than P-frames. We do not need to
estimate the I-frame size, since we always send the I-frames.
The overall algorithm is summarized in Algorithm 2.

5.2 Bit Budget Update
The bit budget bk is the estimation of the total number of

bits that the sender can transmit during the intra-period k
without causing buffer build-up. Here, we assume that, at
any time t since the start of the intra-period, t

T
bk bits can

be transmitted on average, with a mean rate of bk/T . Thus,
if the sender sends less than this amount, the unused band-
width is wasted. In order to account for these missed trans-
mission opportunities, we update the remaining bit budget
at each step n by

b̂k(n) = bk −max
(
Sn,

n

N
bk
)
, (7)

where Sn is the total number of bits sent before selecting
frame n. Without updating the budget, the sender may end
up sending large frames close to the end of the intra-period,
which would then backlog in the buffer, and potentially delay
all the packets in the next intra-period.

5.3 Frame Priority Order
In the frame priority list π, placing frame i before frame

j means we allocate our bit budget to send frame i first,
and that frame j is sent only if there is sufficient bandwidth
budget to do so, after we have decided to send all the frames
placed before frame j. Accordingly, lower layer frames have
higher priority than the higher layer frames, which depend
on the former. Within the base layer, the frames are ranked
in their encoding order, as they follow the IPPP coding
structure. However, within an enhancement layer, any or-
der of frames is decodable, since the frames from lower layers
are picked before. Now, if the layer l frames are prioritized
sequentially from the beginning, budget depletion results in
a lower frame rate until the intra-period ends. On the other
hand, if the frames are prioritized starting from the end,
we may miss the transmission opportunities for the earlier
frames, if the latter frames turn out smaller. Therefore, we
pick the frames in multiple steps, alternating the direction
in each step to strike a balance. Starting with the list of
frames in the appearance order, we divide the list into two
equal-sized lists at each step. We then pick the last frame
from each smaller list, following the direction at that step.

6. SIMULATIONS AND EXPERIMENTS

6.1 Forecasting via Adaptive Filtering
We start our evaluations by motivating the use of the RLS

linear adaptive filter for capacity prediction. We compare
the prediction performance of the RLS with the simple and
popular EWMA predictor [12]. In our experience, the filter
length and the forgetting factor parameters do not signifi-
cantly affect the prediction errors provided that we choose
M < 10 and λ > 0.99. Therefore, we have selected M = 5,
λ = 0.999, θ = 0.001 and fixed this configuration for the rest
of the evaluations. We collected six real cellular link capac-
ity traces (Figure 7) following the methodology in [27], over

Algorithm 2 Dynamic Frame Selection

1: S0 = 0, π0 = π, intra-period k, bit budget bk
2: for all frames n = {0, . . . , N − 1} do
3: ŝj ← γsn + (1− γ)ŝj , for each frame j ∈ `n
4: b̂k(n) = bk −max(Sn,

n
N
bk)

5: Create En from πn, based on ŝ and b̂k(n)
6: if n ∈ En then
7: Sn+1 = Sn + sn and send frame n
8: else
9: πn+1 = πn − {frames depending on n}

10: end if
11: πn+1 = πn − n
12: end for

Table 2: Statistics of traces used in the experiments.

Mean (kbps) Std (kbps) Coeff. of Var. Outage %
Tr1 176 115 0.654 2.0
Tr2 388 165 0.425 0.5
Tr3 634 262 0.413 0.0
Tr4 735 264 0.359 0.2
Tr5 937 356 0.379 1.2
Tr6 1055 501 0.475 0.1

T-Mobile 3G and HSPA networks, during different times of
the day and in different campus locations. Each of these is
1066 seconds long and their statistics can be found in Ta-
ble 2. As expected, the capacity traces are very dynamic,
posing significant challenge to capacity estimation.

Over these traces, in Matlab, we perform time-series fore-
casting using RLS with parameters mentioned above, and
the EWMA filter, where the smoothing parameter α is var-
ied from 0 to 1. We assume that we know the past capacity
values exactly. The results can be seen in Table 3, where
“Best” and “Worst” represent the minimum and maximum
prediction error root-mean square (RMS) values obtained
with EWMA with different smoothing parameters, respec-
tively. We see that for all traces, prediction performance of
RLS is very close to that of the best EWMA predictor, if
not better, as it adapts to the statistics of the time series.

6.2 Dynamic Frame Selection Simulations
Next, we compare the performance of our dynamic frame

Table 3: Comparing the prediction error RMS of
the RLS predictor with those of the best and worst
EWMA predictors with corresponding parameters.
RLS, Best and Worst columns are in Kbps.

RLS αBest Best αWorst Worst
Tr1 53 0.55 55 0.05 87
Tr2 88 0.7 90 0.05 120
Tr3 158 0.55 157 0.05 209
Tr4 186 0.4 178 0.05 211
Tr5 250 0.2 235 1 293
Tr6 244 0.4 242 0.05 291



selection (DFS) algorithm against the layer-push (LP) and
frame-push (FP) algorithms. LP also estimates the frame
size in each temporal layer using the same approach as in
DFS, but then decides on the highest layer lmax that may
be sent. In other words, only the frames from layers up to
lmax are eligible for sending. Among these frames, following
the encoding order, the algorithm sends as many frames as
possible until the bit budget is exhausted. FP, on the other
hand, does not consider layer information and sends as many
frames as possible following their encoding order, until the
bit budget is exhausted.

For each algorithm, we evaluate the total number of frames
sent, the mean and the standard deviation of the resulting
frame intervals, and finally the fraction of the unused bit
budget. Here, a frame interval represents the temporal dis-
tance between a pair of consecutive frames that have been
selected to be sent. The frame interval statistics are cal-
culated using the fraction of time each interval lasts as the
probability to observe that interval. We use the JM en-
coder [15] to encode the video sequence “Crew” [28] with a
hierarchical-P structure having three temporal layers (GoP
length=4) and intra-period of 32 frames. We used a fixed
quantization parameter (QP) of 36, yielding the average bi-
trate of 415 kbps when all frames are included. The resulting
video sequence has a frame rate of 30 fps and comprises 9
intra-periods, with an intra-period of T = 32/30 seconds.
For the proposed algorithm, we used γ = 0.75, which was
found to perform the best, and the frame priority order is
π = (0, 4, 8, 12, 16, 20, 24, 28, 30, 14, 6, 22, 26, 18, 10,
2, 31, 15, 7, 23, 27, 19, 11, 3, 1, 5, 9, 13, 17, 21, 25, 29).
In these simulations, we assume that the bit budget bk is
constant for each intra-period k of the video and we want
to compare the performances of the algorithms described
above under different bk values, from 10 kB to 80 kB. In
Figure 4, we see that FP sends the most frames by sending
as many frames as possible. However, it also has the largest
mean frame interval and the largest frame interval variation,
making the displayed video jittery. On the other hand, the
LP algorithm sends the lowest number of frames but also
with lower mean frame interval and frame interval variance.
The proposed DFS algorithm achieves a good compromise
between sending more frames, consequently utilizing ABW
more closely, and reducing the frame distance variation. In
fact, DFS outperforms both methods in terms of the mean
and standard deviation of the frame intervals, while sending
almost as many frames as the FP. Finally, the plot in the
upper right shows the fraction of the unused bandwidth for
each method, where we see that the performance of DFS is
very similar to FP, whereas LP is not as efficient.

6.3 Evaluation on the Testbed
For system evaluation, we developed a testbed to compare

Rebera with popular video call applications. On this testbed
(Figure 5), S and D are the source and destination end-
points running the video call application under test, while
the nodes CS and CD are cellular link emulators running
the CellSim software [27], respectively. The emulators are
connected to each other through the campus network, and
to their respective end-points via Ethernet. For cellular link
emulation, we use the uplink and downlink capacity traces
collected (Table 2). For evaluation, we report the ABW uti-
lization, the 95-percentile one-way packet delays, and the
95-percentile one-way frame delays as the performance met-
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Figure 4: Comparison of DFS with FP and LP;
number of frames sent (upper-left), unused budget
(upper-right), mean and standard deviation of the
frame intervals (lower-left and lower-right). Encod-
ing frame rate is 30 Hz, thus frame-time is 1/30 sec.

rics. In order to calculate the bandwidth utilization, we
count how many bytes were sent out by the video call appli-
cation under test and compare it with the minimum of the
capacities of the sender link and the receiver link. The one-
way end-to-end delays are collected by different means: in
Rebera experiments, for each packet that made it to the re-
ceiver, the receiver sends an acknowledgement packet back
to the sender over an ethernet cable on which there is no
other traffic (Figure 5). As a result, the measured round-trip
times are almost equal to the one-way delays, enabling us
to measure the delay for each individual packet and frame.
In FaceTime experiments, we used Wireshark to sniff the
packets on the emulator hosts. We also note that FaceTime
sends voice packets even after the voice is muted, at a con-
stant rate of 32 kbps. Rebera, on the other hand, does not
send audio. In order to compensate for this in the bandwidth
utilization calculations, we subtract 32 kbps from the send-
ing rate achieved by Rebera. In each test, we loop the video
sequence “Crew”, which is more challenging in terms of the
video rate than ”Akiyo” and somewhat captures hand/arm
movements present in video calls.

Rebera is able to encode the video in real-time thanks to
the open source x264 video encoder [24]. This allows us to
change the video rate according to the predicted ABW, for
each new intra-period, using x264’s rate control module. We
have modified x264’s code, so that the encoded video has a
hierarchical-P coding structure, by changing the reference
frames used before encoding each frame according to the
H.264/AVC standard. Specifically, in our modification, the
GoP length is set to 4, giving rise to 3 temporal layers. In
all our experiments in the lab, the minimum and maximum
encoding rates were set as 200 kbps and 3 Mbps, respec-
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Figure 6: Sending rate of Rebera and FaceTime un-
der piecewise constant bandwidth.

tively. The video and RLS parameters used are the same as
in Sections 6.2 and 6.1. Specifically, the encoding frame rate
is 30 Hz, and the intra-period length T is 32 frames, or 1.066
seconds. The initial sending rate is set to 120 kbps. In each
experiment, we evaluate the sending rate over consecutive
periods of T seconds. Please note that FaceTime may not
be using a constant intra-period, let alone the same intra-
period T as Rebera. Furthermore, FaceTime’s sending rate
is, in general, the sum of FEC and the video data rates. In
order to feed the same looped test video into FaceTime, we
used the ManyCam [25] virtual webcam on Mac OS 10.10.41.

6.3.1 Evaluation with Piecewise Constant Bandwidth
In this experiment, we use a piecewise constant bandwidth

trace, with steps of 100 kbps lasting 100 seconds, between
300 and 600 kbps. We set the packet loss rate to zero. In
Figure 6, we can see Rebera’s (i) measured bandwidth, (ii)
rate reduction due to the estimated number of backlogged
bits, (iii) overall budget and (iv) the sending rate, along with
FaceTime’s sending rate. On average, the bandwidth utiliza-
tion of Rebera is 86.21%, while FaceTime achieves a utiliza-
tion of 78.78%. Moreover, we can observe that, Rebera is
able to measure the current bandwidth very accurately, and
thus react to the changes in the bandwidth rapidly.

6.3.2 Evaluation with Cellular Capacity Traces
1Detailed explanations can be found online at [1].

0 200 400 600 800 1000
0

0.5 Tr1

0 200 400 600 800 1000
0

0.5
Tr2

0 200 400 600 800 1000
0

1 Tr3

0 200 400 600 800 1000
0

1

2 Tr4

0 200 400 600 800 1000
0

2
Tr5

0 200 400 600 800 1000
0

2
Tr6

Figure 7: Traces used in the experiments. Vertical
axis: capacity (Mbps), horizontal axis: intra-period
index. Traces 2, 3, 4 and 5 are used as forward
capacities, 1 and 6 are used as backward capacities.

In this set of experiments, we use cellular bandwidth traces
(Figure 7) to emulate the cellular links. Each experiment
lasts for 1000 intra-periods (1066 sec). We first present the
results involving a single cellular link along the end-to-end
path. Specifically, we start by examining the particular sce-
nario where the sender is connected through a cellular net-
work, and traces 5 and 6 were used to emulate the forward
and backward end-to-end ABW, respectively. The receiver
is assumed to have a wired connection. In the top plot
of Figure 9, we present Rebera’s and FaceTime’s sending
rates over time. Here, Rebera achieves a forward bandwidth
utilization of 75.6%, while FaceTime’s utilization is 65.2%.
Furthermore, 95-percentile packet and frame delays are ob-
served to be 204 and 232 ms for Rebera, and 307 and 380 ms
for FaceTime. The empirical packet and frame delay CDFs
for both systems can be seen in Figure 8.
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Figure 8: Empirical packet (left) and frame (right)
delay CDFs of Rebera and FaceTime, where forward
and backward bandwidths were emulated via traces
5 and 6, respectively.

Similarly, we employ traces 2, 3, 4 and 5 as the forward,
and traces 1 and 6 for the backward end-to-end ABW. Re-
sults are summarized as bandwidth utilization, 95-percentile



Table 4: Evaluation over single cellular link, using
Trace 1 as the backward capacity. Reported val-
ues are bandwidth utilization percentage, 95-perc.
packet delay, and 95-perc. frame delay, respectively.

Fwd Cap. Rebera(%,ms,ms) FaceTime(%,ms,ms)
Trace 2 68.8, 402, 402 58.1, 447, 415
Trace 3 63.8, 338, 334 32.7, 631, 528
Trace 4 73.5, 177, 201 63.0, 383, 392
Trace 5 71.8, 216, 243 58.7, 317, 341
Average 69.5, 283, 295 53.1, 444, 419

Table 5: Evaluation over single cellular link, using
Trace 6 as the backward capacity. Reported val-
ues are bandwidth utilization percentage, 95-perc.
packet delay, and 95-perc. frame delay, respectively.

Fwd. Cap. Rebera(%,ms,ms) FaceTime(%,ms,ms)
Trace 2 69.5, 381, 394 59.2, 426, 406
Trace 3 66.4, 307, 313 61.9, 341, 349
Trace 4 76.1, 168, 189 70.6, 276, 307
Trace 5 75.6, 204, 232 65.2, 307, 380
Average 71.9, 265, 282 64.2, 337, 360

packet and frame delay tuples in Tables 4 and 5. We can see
from Table 4 and 5 that in all experiments, Rebera achieves a
higher utilization of the forward ABW with shorter delays.
Averaged over these experiments, Rebera provides 20.5%
higher bandwidth utilization compared to FaceTime, and a
reduction of 122 ms and 102 ms in the 95-percentile packet
and frame queueing delays, respectively. When a more chal-
lenging backward capacity (trace 1 in Table 4) is used for the
backward path, the information fed back to the sender side
undergo a longer delay for both Rebera and FaceTime, de-
creasing the ABW utilization of both systems. FaceTime’s
delay performance also degrades, whereas Rebera is still able
to provide similar delays.

Next, we consider the scenarios where both users are con-
nected over different cellular links. We assume there exists
three different cellular connections, which we denote by A,
B and C, where the uplink and downlink ABW pairs for
each connection are given as traces 5 and 6, traces 3 and 4,
and traces 1 and 2, respectively. In other words, connection
A provides the highest mean ABW, while the connection
C provides the lowest. We evaluate all six cases for which
the sender and the receiver have different connections. The
results can be seen in Table 6. In all scenarios, Rebera pro-
vides a significantly higher ABW utilization, while still de-
livering shorter packet and frame delays on average and in
most cases.

6.3.3 Effect of the Tolerance Parameter
Next, we investigate the effect of the tolerance parameter

δ in Section 4.3 on Rebera. We vary δ from 0.05 up to 0.5,
and record the utilization and 95-percentile packet delays in
Table 7. Having a larger δ value means the system is willing
to tolerate more frequent capacity overshoots, and hence

Table 6: Evaluation when both users are connected
over different cellular networks. Reported values are
bandwidth utilization percentage, 95-perc. packet
delay, and 95-perc. frame delay, respectively.

Rebera(%,ms,ms) FaceTime(%,ms,ms)
A to B 60.5, 300, 312 47.9, 529, 508
B to A 58.1, 483, 498 48.5, 485, 483
A to C 59.9, 432, 442 44.0, 588, 518
C to A 61.3, 1066, 1019 43.3, 1278, 851
B to C 61.2, 416, 419 28.2, 1180, 996
C to B 59.5, 804, 809 44.0, 3230, 1090

Average 60.1, 583, 583 42.6, 1215, 741

Table 7: Effect of the tolerance parameter on Rebera
over single cellular link. Forward-backward capac-
ity: traces 3-6

δ 0.05 0.1 0.2 0.5
ABW utilization (%) 66.4 69.6 72.7 75.36

95-perc. packet delay (ms) 307 354 371 486
95-perc. frame delay (ms) 313 367 403 516

more frequent large packet and frame delays, in exchange
for higher bandwidth utilization, which could be the case for
video applications with less stringent delay requirements.

6.3.4 Rebera Bahavior in Presence of Packet Loss
The purpose of this evaluation is to demonstrate that Re-

bera can still track the link capacity in the presence of packet
loss. Note that additional studies are needed to investigate
the error resilience provided by the temporal layering, and
how to further improve it through unequal error protection.
To examine the performance of Rebera in presence of packet
loss, we employ CellSim to introduce random iid losses. We
tested Rebera when the packet loss rate is 5% and 10%, and
the results are given in Table 8. Although not significantly,
the ABW utilization drops with the loss rate, as there are
fewer packets crossing the links. Furthermore, the delays ex-
perienced by the received frames reduce, since there is less
backlog in the buffers.

Table 8: Effect of the packet losses on Rebera over
single cellular link. Forward-backward capacities:
traces 3-6

Packet loss rate 0% 5% 10%
ABW utilization (%) 66.4 63.4 61.1

95-perc. packet delay (ms) 307 281 286

6.4 Evaluation over Cellular Networks
Finally, we evaluate Rebera over a real cellular network.

The setup we used for this experiment can be seen in Figure
10. Here, a mobile device (Motorola Nexus 6) is tethered to
the sender host via USB, acting as a modem. The sender
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Figure 10: Setup for experiments in-the-wild

is stationary during the experiments, which last for 10 min-
utes. The receiver host is inside the campus network, and
has a public IP address. The experiment was done over the
T-Mobile network, using LTE and HSPA on December 4,
2015 at 6 PM. In Figure 11, we can see that, in the HSPA
uplink, which provides an average ABW of 1.055 Mbps, the
outages may last as long as 20 seconds. On the other hand,
LTE provides an almost outage-free uplink channel, with an
average ABW of 5.95 Mbps. Table 9 summarizes the exper-
iment results. Note that during the experiment over LTE,
Rebera’s maximum encoding rate is set as 10 Mbps. This
change serves as a means to utilize the ABW better, and is
not necessary for Rebera’s operation. The empirical packet
delay distributions for Rebera using either access technology
is given in Figure 12.

Table 9: Rebera’s performance over T-Mobile net-
work with HSPA and LTE technologies

Rebera HSPA LTE
average sending rate (Mbps) 0.81 5.17
95-perc. packet delay (ms) 221 105
95-perc. frame delay (ms) 298 137
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Figure 11: Rebera sending rate and measured band-
width over LTE and HSPA
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7. CONCLUSIONS
Video calls over cellular links have to adapt to fast-changing

network bandwidth and packet delay. In this study, we
proposed a new real-time video delivery system, Rebera,
designed for cellular networks. Rebera’s proactive conges-
tion controller uses the video frames to actively measure
the capacity of cellular links, and through these measure-
ments makes a safe forecast for future capacity values, us-
ing the well-known adaptive filtering techniques. Through
its dynamic frame selection module designed for temporal
layered streams, Rebera ensures that its video sending rate
never violates the forecast by discarding higher layer frames,
thereby preventing self-congestion, and reducing the packet
and consequently the frame delays. Our experiments showed
that Rebera is able to deliver higher bandwidth utilization
and shorter packet and frame delays compared with Apple’s
FaceTime on average. In the future, we will consider UEP
among temporal layers to improve the system performance
in the presence of packet loss.
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