
Analysis and Design of the Google Congestion Control
for Web Real-time Communication (WebRTC)

Gaetano Carlucci
Politecnico di Bari, Italy

gaetano.carlucci@poliba.it

Luca De Cicco
Télécom SudParis, France

luca.de_cicco@telecom-
sudparis.eu

Stefan Holmer
Google, Sweden

holmer@google.com

Saverio Mascolo
Politecnico di Bari, Italy

saverio.mascolo@poliba.it

ABSTRACT
Video conferencing applications require low latency and high
bandwidth. Standard TCP is not suitable for video conferencing
since its reliability and in order delivery mechanisms induce large
latency. Recently the idea of using the delay gradient to infer
congestion is appearing again and is gaining momentum. In
this paper we present an algorithm that is based on estimating
through a Kalman filter the end-to-end one way delay variation
which is experienced by packets traveling from a sender to a
destination. This estimate is compared to an adaptive threshold
to dynamically throttle the sending rate. The control algorithm has
been implemented over the RTP/RTCP protocol and is currently
used in Google Hangouts and in the Chrome WebRTC stack.
Experiments have been carried out to evaluate the algorithm
performance in the case of variable link capacity, presence of
heterogeneous or homogeneous concurrent traffic, and backward
path traffic.

CCS Concepts
•Networks→ Network protocol design; •Information systems
→ Web conferencing;

Keywords
Real-time communication, congestion control, WebRTC

1. INTRODUCTION
Video conferencing QoE is not only affected by the goodput,

which is generally related to the video image quality, but also by
the connection latency that should be kept as low as possible to
allow a seamless communication [4]. This is the reason why flows
generated by such applications are considered delay sensitive. It
is well-known that the TCP, which is still the most used transport
protocol over the Internet, is not suitable to deliver traffic generated
by real-time applications. The main reason is that the TCP favors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10-13, 2016, Klagenfurt, Austria
c© 2016 ACM. ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910605

reliability and in order delivery through retransmissions over packet
delivery timeliness. Although some works have investigated the
implications of employing TCP for VoIP traffic [5, 29], the case of
video conferencing, – which indeed entails much higher data rates
– has never been studied. Thus, video conferencing applications
have traditionally used UDP, leaving congestion control to the
application layer. It has been shown that several well-known video
conferencing applications adapt to network available bandwidth at
least to some extent, such as in the case of Skype [8] and other
applications [33].

This research area is attracting a renewed attention due to the
WebRTC initiative that aims at standardizing an inter-operable and
efficient framework for real-time communication in Web browsers
using RTP [1]. In this paper we present the Google Congestion
Control (GCC) [15], an algorithm compliant with the WebRTC
framework, that it is implemented in the Chrome Browsers and
used in Google Hangouts. The algorithm has been designed to
work with RTP/RTCP protocols and is based on the idea of using
the delay gradient to infer congestion. For this purpose, a Kalman
filter is designed to produce an estimate of the queuing delay
gradient which is compared to an adaptive threshold in order to
detect congestion.

The remainder of the paper is organized as follows: Section 2
provides a review of the relevant literature on congestion control
for delay-sensitive flows; Section 3 describes the proposed
algorithm; Section 4 motivates the algorithm design choices
employed to detect network congestion; Section 5 presents the
experimental testbed and the employed metrics; Section 6 shows
the experimental results and finally Section 7 concludes the paper.

2. RELATED WORK
Traditional loss-based TCP is not suitable for video conferencing

traffic since its congestion control continuously probes for network
available bandwidth introducing periodic cycles during which
network queues are first filled and then drained. These queue
oscillations induce a time-varying stochastic delay component
that adds to the propagation time and make delay-sensitive
communications problematic. The idea that network delay was
correlated to network congestion has been proposed since 1989
[16]. However, several issues related to delay measurements in
delay-based algorithms have been exposed [23], especially in the
case of wireless environments [13] and when the bottleneck is
shared with loss-based flows [12]. This section provides a review
of the relevant literature on congestion control for delay-sensitive
flows in wide area networks.

The use of RTT to infer congestion. The first efforts
focusing on the reduction of the queuing delay were set in the
TCP congestion control research domain and, consequently, many
algorithms for real-time traffic are rooted on this literature. The
first congestion control algorithm specifically designed to contain
the end-to-end latency by employing delay measurements is the
seminal work by Jain which dates back to 1989 [16]. Since
then, several delay-based TCP congestion control variants have
been proposed, such as TCP Vegas [3]. Typically, delay-based
algorithms require the knowledge of the end-to-end RTT statistics
to establish appropriate delay thresholds used to infer congestion,
such as in the case of TCP Vegas [3] and TCP FAST [30]. It has
been shown that when the RTT is used as a congestion metric a
low channel utilization may be obtained in the presence of reverse
traffic or when competing with loss-based flows [12]. It is worth
mentioning that the problem of reverse traffic is crucial in the
context of video conferencing, since video flows are sent in both
directions.

The use of one way delay to infer congestion. Another class
of algorithms advocates the use of one way delay measurements to
rule out the sensitivity to the reverse path congestion. Examples
are LEDBAT (over UDP) [26] and TCP-LP [18]. In particular,
LEDBAT [26] increases its congestion window at a rate that is
proportional to the distance between the measured one way delay
and a fixed delay target τ . It has been shown that LEDBAT
is affected by the so called “latecomer effect”: when two flows
share the same bottleneck the second flow typically starves the first
one [7].

The use of delay-gradient to infer congestion. The idea of
employing RTT gradient to infer congestion has been recently
employed to overcome the aforementioned “latecomer effect”.
Some examples are CDG [14] and Verus [34]. CDG [14]
has been designed with the aim of coexisting with loss-based
flows while keeping end-to-end delay low. Verus [34] has
been specifically designed for cellular networks where sudden
link capacity variations make the congestion control design
challenging. Recently, it has been shown that accurate delay
gradient measurement are achievable in data center networks by
employing NIC hardware timestamps [19].

Other approaches. Among recently proposed congestion
control algorithms, which do not explicitly infer congestion by
employing network delay measurement, we cite Sprout [32],
Remy [31], and FBRA [20]. Sprout [32] takes a stochastic
approach to contain delays while maximizing the throughput; the
paper shows that the algorithm outperforms applications such as
Skype, Facetime, and Google Hangouts in a single flow scenario,
however, the performance in the case of multiple flows sharing a
bottleneck has not been evaluated yet. Remy [31] is a framework
to generate congestion control algorithms. By defining a utilization
function based on the users requirements Remy employs the
a-priori knowledge of the network to train a machine to learn
congestion control schemes. FBRA [20] proposes a FEC-based
congestion control algorithm: the rationale is to probe the available
bandwidth through FEC packets and in the case of losses due
to congestion the redundant packets help in recovering the lost
packets.

Design for RTP/RTCP. The focus of this paper is the design
of a congestion control algorithm for RTP/RTCP over UDP. Even
though this research area has been active in the past [27], today it is
attracting a renewed attention due to the WebRTC W3C and IETF
joint initiative which aims at enabling inter-operable real-time
communication among Web browsers [1]. Three end-to-end
algorithms have been proposed within the IETF RMCAT working
group: 1) Network Assisted Dynamic Adaptation (NADA) [35],
is a loss/delay-based algorithm that relies on one way delay
measurements; 2) Self-Clocked Rate Adaptation for Multimedia
(SCREAM) [17] which inherits some ideas from LEDBAT;
3) Google Congestion Control (GCC) [15] that will be described
in the following.

3. BACKGROUND
This section provides background information on the algorithm

presented in the paper. We start by defining the queuing delay
gradient and then we show how it is employed in the proposed
algorithm to detect congestion.

3.1 Queuing delay gradient
The (one way) queuing delay gradient is defined as the derivative

of the queuing delay Tq(t) which can be modeled as Tq(t) =
q(t)/C, where C is the bottleneck link capacity and q(t) is the
queue length measured in bits. Thus, the queuing delay gradient
Ṫq(t) is equal to:

Ṫq(t) =
q̇(t)

C
(1)

The derivative of the queue length q̇(t), can be modeled as follows:

q̇(t) =

{
r(t)− C 0 ≤ q(t) ≤ qM
0 otherwise

(2)

where r(t) is the queue filling rate measured in bit per second and
qM is the maximum queue length. By definition, q̇(t) is equal
to zero, and thus Ṫq(t) = 0, when the queue length q(t) stays
constant. This can happen in three different conditions: 1) when the
queue is zero due to channel underutilization, i.e., when the filling
rate r(t) is below the link capacity C and the queue eventually gets
empty; 2) when the queue is full due to persistent congestion, i.e.
when the filling rate r(t) exceeds the link capacity C; 3) when
the input rate r(t) exactly matches C. In the third case, i.e.
r(t) = C, the queue stays constant to a value q ∈ [0, qM]. Such
a situation, which in [22] is defined as standing queue, is regarded
as undesirable since it steadily delays the incoming traffic. The
proposed algorithm aims at keeping the queue as small as possible
without underutilizing the link. To achieve this goal the algorithm
has to probe for the available bandwidth increasing its sending rate
until a positive queuing delay variation is detected. At this point the
sending rate is reduced. For this reason we argue that some queuing
delay has to be induced in order to run the delay-based congestion
control.

3.2 Algorithm architecture
Figure 1 shows the overall control architecture employed by the

Google Congestion Control (GCC) algorithm. The sender employs
a UDP socket to send RTP packets and receive RTCP feedback
reports from the receiver. The algorithm has two components: 1) a
delay-based controller, placed at the receiver, which computes a
rate Ar that is fed back to the sender with the aim of containing
the delay; 2) a loss-based controller, placed at the sender, which
computes the target sending bitrate As that cannot exceed Ar .

RTP packets

RTCP

REMB

RTP packets
Arrival
filter

OverUse
Detector

threshold
AdaptiveReceiver

Delay−based controller

Sender

Encoder

Pacer

Padder/FEC

Processing
Remb

 Controller
Remote Rate

Loss−Based
Controller

m(t)

m(t)

send stream

Ar

fraction loss

A = min(Ar, As)

γ(t)

s

A

Ar

Network

Figure 1: Google Congestion Control architecture

Sender Receiver

video frame i

video frame i−1

time

ti − ti−1

Ti − Ti−1

ti

Ti−1

Ti
ti−1

Figure 2: One way delay gradient measurement

In the following we provide a description of the algorithm.
Technical details can also be found in the IETF draft [15] and in
the WebRTC code repository1 of the Chromium browser.

3.3 The delay-based controller
The receiver-side controller is a delay-based congestion control

algorithm that computes Ar according to the following equation:

Ar(ti) =

ηAr(ti−1) σ=Increase
αRr(ti) σ=Decrease
Ar(ti−1) σ=Hold

(3)

where ti denotes the time the i-th video frame is received, η =
1.05, α = 0.85, and Rr(ti) is the receiving rate measured in the
last 500ms. Figure 1 shows a block diagram of the delay-based
controller that is made of several components described in the
following.

The remote rate controller is a finite state machine (see Figure 4)
in which the state σ of (3) is changed by the signal s produced by
the over-use detector based on the output m(ti) of the arrival-time
filter. The adaptive threshold block dynamically sets the threshold
γ(ti) used by the over-use detector. The REMB Processing decides
when to send a REMB2 message based on the value of the rate Ar .
Finally, it is important to notice that Ar(ti) is upper bounded by
1.5Rr(ti).

In the following we provide a detailed description of each block.

1https://chromium.googlesource.com/external/webrtc/+/master/
webrtc/
2http://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03

overuse underuse normal

ti

γ(ti)

−γ(ti)

m(ti)

Figure 3: Over-use detector signaling

The arrival-time filter. The goal of this block is to produce an
estimate m(ti) of the one way delay gradient. For this purpose, we
employ a Kalman filter that estimatesm(ti) based on the measured
one way delay gradient dm(ti) which is computed as follows (see
Figure 2):

dm(ti) = (ti − ti−1)− (Ti − Ti−1) (4)

where Ti is the time at which the first packet of the i-th video
frame has been sent and ti is the time at which the last packet that
forms the video frame has been received.

The over-use detector. Every time ti a video frame is received,
the over-use detector produces a signal s that drives the state σ
of the FSM (3) based on m(ti) and a threshold γ(ti). Figure 3
shows how s is generated: when m(ti) > γ(ti), the algorithm
starts to track the time spent in this condition and if it is greater than
100ms the overuse signal is generated. On the other hand, if m(ti)
decreases below−γ(ti), the underuse signal is generated, whereas
the normal signal is triggered when −γ(ti) ≤ m(ti) ≤ γ(ti).

Remote rate controller. This block computes Ar according to
(3) by using the signal s produced by the over-use detector, which
drives the finite state machine shown in Figure 4. The aim of the
finite state machine is to minimize the queuing delays in the buffers
along the end-to-end path. The rationale is the following: when the
bottleneck buffers start to build-up, the estimated one way delay
gradient m(ti) becomes positive. The overuse detector detects this
variation and triggers an overuse signal, which drives the machine
into the “decrease” state. As a result, the sending rate is reduced
and the bottleneck buffer starts to be drained, up to the point that
the estimated one way delay gradient m(ti) becomes negative. An

normal

Incr.

underuse

overuse

normal/underuse

overuse

Hold

underuseoveruse

Decr.

normal

Ar(ti) = ηAr(ti−1)Ar(ti) = Ar(ti−1)Ar(ti) = αR(ti)

Figure 4: Remote rate controller finite state machine

underuse signal is then triggered, which drives the machine into
the “hold” state. The machine remains in the “hold” state until the
bottleneck buffer is emptied. When this occurs, m(ti) approaches
0 and the overuse detector generates a normal signal, which drives
the machine into the “increase” state.

Adaptive threshold. The aim of this block, shown in Figure 1,
is to adapt the algorithm sensitivity to delay variations based on
the network conditions. In particular, this block avoids two issues:
1) the delay-based controller inhibition when the size of bottleneck
queue along the path is not sufficiently large and 2) the starvation
of GCC flows in the presence of concurrent loss-based TCP traffic.
The input of this block is the estimated delay gradient m(ti); the
output is the dynamic value of the threshold γ(ti) which is fed to
the over-use detector. More details on this block are provided in
Section 4.2.

REMB Processing. This block notifies the sender with the
computed rateAr through REMB messages. The REMB messages
are sent either every 1s, or immediately, ifAr(ti) < 0.97Ar(ti−1),
i.e. when Ar has decreased more than 3%.

3.4 The loss-based controller
The loss-based controller complements the delay-based

controller in the case losses are measured. The algorithm acts
every time tk the k-th RTCP report message or a REMB message
carrying Ar is received by the sender. The REMB format is an
extension of the RTCP protocol that is being discussed at the
IETF. The RTCP reports include the fraction of lost packets fl(tk)
computed as described in the RTP RFC. The sender uses fl(tk)
to compute the sending rate As(tk) according to the following
equation:

As(tk) =

As(tk−1)(1− 0.5fl(tk)) fl(tk) > 0.1

1.05(As(tk−1)) fl(tk) < 0.02

As(tk−1) otherwise
(5)

The rationale of (5) is simple: 1) when the fraction lost is
considered small (0.02 ≤ fl(tk) ≤ 0.1), As is kept constant,
2) if a high fraction lost is estimated (fl(tk) > 0.1) the rate is
multiplicatively decreased, whereas 3) when the fraction lost is
considered negligible (fl(tk) < 0.02), the rate is multiplicatively
increased.

3.5 Sending rate actuation
In this Section we describe the mechanism employed to actuate the
sending rate computed by the two controllers. Figure 1 shows that
the sender sets the target sending bitrate A equal to the minimum
between Ar and As. The target bitrate A is fed both to the Pacer
and to the Encoder. The Encoder strives to produce a bitrate

0 50 100 150 200 250 300
0

500

1000

k
b
p

s

A link capacityGCC rate

Figure 5: Sending Rate Actuation

as close to this target as possible. However, the encoder cannot
change the rate as frequently as the Pacer’s rate to avoid video
quality flickering which is known to have an adverse impact on the
QoE [21]. For this reason the encoder may not be able to produce
a rate precisely matching the target A. In the case the encoder
produces a rate higher than the target A, the Pacer is allowed to
drain its queue at a rate f · A, where f is the Pacing factor equal
to 1.5. In this way the pacer can quickly empty its queue avoiding
queuing delays at the sender. On the other hand, whenever the
Pacer produces a rate lower than the target A, padding or FEC
might be added. As a result of this mechanism, an average sending
bitrate equal to A is produced. Figure 5 shows the case of one
GCC flow over a 1Mbps link. The figure shows that the actual rate
generate by the GCC sending engine nicely tracks the target bitrate
A set by the congestion control algorithm.

4. CONGESTION DETECTION
In this Section, we motivate the design choices adopted to infer

network congestion. In particular, we cover two crucial aspects:
1) the way the estimate m(ti) is produced by means of a Kalman
filter and 2) the design of the adaptive threshold used to detect
congestion.

4.1 Kalman filter

4.1.1 Design

We assume that the delay gradient is affected by a jitter noise.
To filter out this noise and produce the estimate m(t), a Kalman
filter is employed. The design of the Kalman filter is based on
a system model which consists of: 1) a dynamical state equation
which describes the dynamics of the state vector, and 2) an a static
output equation describing the relationship between the state vector
and the measurement [11].

Let us consider the following model of the state vector3 which is
composed by two components:

θ(ti) =

[1
C(ti)

µ(ti)

]
(6)

where 1/C(ti) is the inverse of the bottleneck link capacity and
µ(t) is the one way queuing delay gradient; ti denotes the time the
i-th video frame is received. The system model is given by:

{
θ(ti+1) = θ(ti) +w(ti) (state equation)

dm(ti) = ∆L(ti)
C(ti)

+ µ(ti) + n(ti) (output equation)
(7)

3Throughout the paper vectors are represented with boldface fonts
to differentiate them from scalar variables.

The state evolution at time ti+1 is given by its state at time ti plus
a Gaussian state noise w(ti). The model of the measured one way
delay variation dm(ti) is given by the sum of three components:
1) the transmission time variation, given by the ratio between
the size variation of two consecutive video frames ∆L(ti) and
the bottleneck link capacity C(ti), 2) the queuing delay gradient
µ(ti), and 3) n(ti) modeled as a Gaussian noise. However, in the
following we show that the system described by (7) may lack the
observability property of dynamical systems [11]. A dynamical
system is observable if there exists a finite N , such that for every
initial state θ(t0), N measurements {d(t0), d(t1), ..., d(tN−1)}
uniquely distinguish the initial state θ(t0) [11]. We can prove the
following proposition:

PROPOSITION 1. The system described by eq. (7), assumed as
noise-free, is not observable if the size variation ∆L(ti) of two
consecutive samples is constant.

PROOF. We consider two consecutive measurements N = 2,
since we have a two-dimensional system:{

d(t0) = ∆L(t0)
C(t0)

+ µ(t0)

d(t1) = ∆L(t1)
C(t1)

+ µ(t1) = ∆L(t1)
C(t0)

+ µ(t0)
(8)

From (7) we have that θ(t1) = θ(t0) in a noise-free system. The
solution θ(t0) to (8) is unique if and only if the two equations are
linearly independent or, in other terms, if the observability matrix:

O =

[
∆L(t0) 1
∆L(t1) 1

]
(9)

has rank(O) equal to 2 [11]. This condition does not hold if
∆L(t0) = ∆L(t1), which concludes the proof.

Thus, according to Proposition 1, the system is observable if and
only if ∆L(ti) changes at each step. Unfortunately, this condition
does not hold in general and, in such cases, the state estimation
θ(ti) is indeterminate.

This is the reason why we propose to simplify the system as
follows:{

m(ti+1) = m(ti) + w(ti) (state equation)

dm(ti) = m(ti) + n(ti) (output equation)
(10)

where m(t) is now the only state variable, which is the model of
the one way delay gradient. This choice can also be related to the
fact that we can measure the one way delay gradient as a whole,
but we cannot distinguish the part that is due to the queuing (i.e.
µ(ti)) from the part that is due to transmission and processing time.
Moreover, we argue that the contribution given by transmission
time variation ∆L(ti)/C(ti) can be considered negligible with
respect to the queuing delay gradient µ(ti). Now, since system
(10) is scalar, observability is always guaranteed.

The state noise w(ti) is modeled as a stationary Gaussian
process with zero mean and variance Q(ti) = E[w(ti)

2].
Similarly to w(ti), the measurement noise n(ti) – which takes into
account the network jitter – is considered as a stationary Gaussian
process with zero mean and variance σ2

n(ti) = E[n(ti)
2].

Both the state noise variance and measurement noise variance are
important parameters which are required to be tuned appropriately.
This issue will be addressed in Section 4.1.2.

Figure 6 shows how a new state estimate m(ti) is obtained:
at each step the innovation or residual z(ti) is multiplied by the

new state
estimateKalman

Gain

correction

state
prediction

network

from

z−1

K(ti)

+
+

z(ti)

+

dm(ti)

−

m(ti−1)

m(ti)

Figure 6: State estimation with a Kalman filter.

Kalman gainK(ti) which provides the correction to the estimation
m(ti) according to:

m(ti) = (1−K(ti)) ·m(ti−1) +K(ti) · (dm(ti)) (11)

Eq. (11) shows that the Kalman filter, in this specific case, is
equivalent to an EWMA filter made of two additive terms [9]:
the first taking into account the contribution of the previous state
estimate m(ti−1) and the second accounting for the contribution
of the measurement dm(ti). The gain K(ti) balances these two
contributions: if K(ti) is large, more weight is given to the
measurement, conversely when K(ti) is small more weight is
given to the state estimate. The Kalman gain is updated according
to the process and the measurement noise variance:

K(ti) =
P (ti−1) +Q(ti)

(P (ti−1) +Q(ti)) + σ2
n(ti)

(12)

where P (tk) is the system error variance defined as:

P (ti) = E[(m(ti)−m(ti))
2] (13)

which we want to minimize at steady state. This value can be
recursively computed at each step as follows:

P (ti) = (1−K(ti)) · (P (ti−1) +Q(ti)) (14)

An interpretation of (12) is the following: as the measurement
error variance σ2

n(ti) approaches zero, the measurement is trusted
more and thus the Kalman gain increases. Vice versa, as the error
covariance P approaches zero, the measurement is trusted less and
the Kalman gain decreases.

4.1.2 Implementation
Several parameters have to be tuned to implement the Kalman

filter: 1) the statistics of the state and measurement noise processes,
2) the initial conditions of P .

We start by considering the state noise variance Q. First, we
assume Q to be constant and we carry out a set of experiments to
appropriately tune it.

Figure 7 shows the effect of Q on both the estimate of the one
delay gradient m(t) and the sending rate. Four different values
of Q have been tested in the case of a single GCC flow over
a 1Mbps link. Figure 7 also reports the RTT dynamics which
is correlated to the one way delay gradient. We notice that,
when Q = 10−4, the reaction to RTT variations is slow, thus
provoking large queuing delays which are clearly visible in the
corresponding RTT dynamics (Figure 7(d)). Figure 7(c) shows that,
when Q = 10−3, the estimated delay gradient is well correlated

50

150

250

0
250
500
750
1000

0 50

R
a
te

 (
k
b
p
s
)

100

R
T

T
 (

m
s
)

m
 (

m
s
)

Time (s)
150 200

−2
−1
0
1
2

(a) Q = 10−1

50

150

250

0
250
500
750
1000

R
a
te

 (
k
b
p
s
)

100

R
T

T
 (

m
s
)

m
 (

m
s
)

Time (s)
0 50 100 150 200

−2
−1
0
1
2

0

(b) Q = 10−2

50

150

250

0
250
500
750
1000

0

R
a
te

 (
k
b
p
s
)

100

R
T

T
 (

m
s
)

m
 (

m
s
)

Time (s)
50 100 150 200

−2
−1
0
1
0

2

(c) Q = 10−3

50

150

250

0
250
500
750
1000

0 50 100 150 200

R
a
te

 (
k
b
p
s
)

100

R
T

T
 (

m
s
)

m
 (

m
s
)

Time (s)

−2

0
−1
0
1
2

(d) Q = 10−4

Figure 7: Effect of the state noise variance Q on the measured
gradient, RTT and Sending Rate

with the RTT dynamics: in correspondence to RTT increases,m(t)
exhibits positive spikes and in correspondence to RTT decreases
m(t) shows negative spikes. Finally, m(t) is steered to 0 when
the RTT is kept close to the propagation delay RTTmin = 50ms
since in this case the delay gradient is zero. When Q = 10−1

and Q = 10−2 are used, m(t) becomes very sensitive to the jitter
noise causing link underutilization due to the fact that the reaction
to congestion might be driven by the jitter noise. Based on this
analysis, we have set Q equal to:

Q = 10−3 (15)

We now focus on the issue of estimating the measurement noise
variance σ̂2

n(ti). We estimate σ̂2
n(ti) by using an exponential

moving average filter of the residual z(ti) = dm(ti)−m(ti−1):

σ̂2
n(ti) = β · σ̂2

v(ti−1) + (1− β) · z2(ti) (16)

where β = 0.95 and dm(ti) is measured according to (4). This
is a typical methodology employed when information about the
measurement noise is not available [2].

Finally, regarding the system initial conditions, quick
convergence is guaranteed when the initial system error variance
P (0) is larger than the state noise variance Q. We have set
P (0) = 10−1. In these conditions, the initial estimate of the state
can be freely set to any value (we have chosen m(0) = 0).

4.2 Adaptive threshold design
The goal of the adaptive threshold block of Figure 1 is to

adapt the sensitivity of the algorithm to the delay gradient based
on network conditions. We show that the threshold γ(ti), used
by the over-use detector, must be made adaptive otherwise two
issues can occur: 1) the delay-based control action may have no
effect when the size of the bottleneck queue along the path is
not sufficiently large and 2) the GCC flow may be starved by a
concurrent loss-based TCP flow. Toward this end, we propose the
following adaptive threshold:

γ(ti) = γ(ti−1) + ∆T · kγ(ti)(|m(ti)| − γ(ti−1)) (17)

where ∆T = ti − ti−1, and ti is the time instant the i-th video

Figure 8: Contour plot of the objective function U as a function
of ku and kd

frame is received. The gain kγ(ti) is defined as follows:

kγ(ti) =

{
kd |m(ti)| < γ(ti−1)

ku otherwise
(18)

where ku and kd determine, respectively, the speed at which the
threshold is increased or decreased. By using (17), the delay-based
controller at the receiver compares the one way delay gradient
m(ti) with a threshold γ(ti) which is a low-pass filtered version
of |m(ti)|. The rationale is the following: when m(ti) overshoots
γ(ti), the delay-based controller reduces m(ti) and the threshold
γ(ti) followsm(ti) with a slower time constant so thatm(ti) stays
below γ(ti) and leads the algorithm into the decrease state. This
continues until m(ti) again overshoots γ(ti) and the delay-based
algorithm again reduces m(ti). This adaptation avoids the GCC
flow starvation when a TCP flow enters the bottleneck. It is worth
noting that when γ(ti) > m(ti), γ(ti) followsm(ti) with a shorter
time constant so that fewer decrease events are required to make
m(ti) < γ(ti).

Choice of the threshold parameters. A key feature in the design
of the adaptive threshold resides in the tuning of the parameters
ku and kd which define the time constant at which the threshold
γ(ti) adapts to the delay gradient. In other words, the parameters
ku and kd determine the algorithm sensitivity to the estimated one
way delay m(t). In order to tune these parameters we have defined
an optimization problem by employing the objective function
proposed in [28]:

U(x) =

N∑
i=1

Uα(xi) (19)

where Uα(xi) is the objective function measured for the i-th flow.
The overall utilization is obtained as the sum of Uα(xi) for each
of the N concurrent flows. xi is the average throughput of the i-th
flow and Uα(x) is a concave function given by:

Uα(xi) =
x1−α
i

1− α (20)

For any value of α > 0 this optimization problem is
Pareto-efficient [28]. The maximization of U implies a fair

0 50 100 150 200 250 300
0

500

1000
k
b
p
s

0 50 100 150 200 250 300

100
300
500

γγ

fraction loss

RTT

0

2
1

−1
−2

0 100 150 200 250 300

m
s

%

0
50

100

50

0 100 150 200 250 300

m
s

50
Time(s)

m(t): estimated delay gradient

GCC rate link capacityA

(a) Static threshold

0 50 100 150 200 250 300
0

500

1000

k
b
p
s

0 50 100 150 200 250 300
100
300
500

γγ

fraction loss

RTT

m
s

0
50

100

%

0m
s

50 100 150 200 250 300
Time(s)

0 50 100 150 200 250 300
2

1

−1

−2
0

GCC rate

m(t): estimated delay gradient

link capacityA

(b) Adaptive threshold

Figure 9: Effect of the adaptive threshold in the case of a single GCC flow over a 1Mpbs link with queue size T q = 150ms

allocation of the throughput among concurrent flows. In the case of
video conferencing we need to extend (19) to consider the impact
of the queuing delay on system performance [31]:

U(x,y) =

N∑
i=1

(Uα(xi)− δ · Uβ(yi)) (21)

The same rationale used for Uα(xi) applies to Uβ(yi) where
yi refers to the queuing delay measured for the i-th flow. The
parameters α and β express the trade-off between fairness and
efficiency for throughput and delay whereas δ expresses the relative
importance of delay with respect to throughput. Following the
rationale of [31] we have used α = 2, β = 1, i.e. we put
more emphasis on the throughput fairness, and δ = 0.15, which
guarantees a good balance between Uα(xi) and Uβ(yi).

We have defined three different scenarios in which we measure
the objective function (21). These are three evaluation scenarios
described in Section 6: 1) a single GCC flow over a bottleneck
with variable link capacity (Section 6.1), 2) multiple concurrent
GCC flows over a bottleneck with constant link capacity (Section
6.2), 3) a GCC flow against a TCP flow (similarly to the case of
Section 6.3). The objective function has been computed for every
value of ku and kd in the range [10−5, 0.1] × [10−5, 0.1] divided
in 200 × 200 intervals in logarithmic scale. The contour map
of the sum of the normalized objective functions U obtained in
each scenario for every couple (ku,kd) is shown in Figure 8. U
increases when ku > kd i.e. when the time constant at which
γ(ti) is increased is smaller than the time constant at which it
is decreased. However when ku � kd (in the bottom-right
corner of Figure 8) the threshold decreases too slowly reducing
the algorithm sensitivity to the delay inflation; this induces high
queuing delays and, as a consequence, U decreases. On the other
hand, when ku < kd the algorithm becomes very sensitive to
the delay gredient which leads to throughput degradation in the
presence of concurrent TCP flows. The optimum value is obtained
for (ku,kd) = (0.01, 0.00018). This guarantees a good balance
between high throughput, delay reduction, intra and inter-protocol
fairness.

Influence of the bottleneck queue size on the delay gradient.
In this paragraph we show why the threshold must be adaptive in
order to avoid the inhibition of the delay-based algorithm when

RTT (ms)

0
50 100 200150

0.5

0.75

0.25

1 0.95
130ms 187ms

C
D

F

adaptive threshold static threshold

Figure 10: RTT comparison in the case of a single GCC flow

the size of the bottleneck queue is not sufficiently large. For
this purpose we consider the case of a single flow accessing a
bottleneck. We show that an undesirable phenomenon can arise if
the threshold is statically set to a value γ: in particular, if γ is larger
than the maximum measurable delay gradient mM the delay-based
algorithm has no effect. Figure 9 (a) shows a real experiment (see
Section 5 for details on the testbed) where a single GCC flow enters
a 1Mbps bottleneck link with a drop-tail queue whose maximum
queuing time is T q = 150ms. Figure 9 compares the GCC rate, the
RTT, and the fraction loss dynamics in the case of a static setting of
the threshold (Figure 9 (a)) and in the case of the adaptive threshold
(Figure 9 (b)). With a static threshold γ̄, the delay-based controller
becomes ineffective and is not able to react to delay inflation. This
is due to the fact that the maximum value of the delay gradient
mM , which depends on T q , is smaller than γ̄ i.e. the value of γ̄
is too large for T q = 150ms. Figure 9 (b) shows that, with the
adaptive threshold, γ(t) follows m(t) with a slower time constant
and, when m(t) overshoots γ(t), the delay-based algorithm can
decrease the sending rate. Moreover, since ku > kd the threshold is
increased quicker than how it is decreased. Figure 9 (b) also shows
that the controller is able to avoid packet losses, i.e. fl(t) = 0
throughout the whole duration of the experiment. To further show
the benefits of the adaptive threshold, Figure 10 compares the
cumulative distribution function of the measured RTT in the two
experiments reported in Figure 9. The median value of the RTT
is very close to the propagation delay RTTmin = 50ms set by
the testbed in both of the cases, whereas thanks to the adaptive
threshold the 95th percentile of the RTT is reduced from 187ms to
130ms.

0 50 100 150 200 250 300 350 400

1000

2000

k
b
p
s

γγ

fraction loss

RTT

50 100 150 200 250 300 350 400

500

m
s

50 100 150 200 250 300 350 400

50

100

%

0

0 50 100 150 200 250 300 350 400
Time(s)

m
s

0 50 100 150 200 250 300 350 400

100

300

500

m
s

0

3

−3

GCC rate

m(t): estimated delay gradient

link capacityTCP rate

(a) Static threshold

0 50 100 150 200 250 300 350 400

1000

2000

(k
b
p
s
)

0 5050 100100 150150 200200 250250 300300 350350 400400

100

500

300

500

γγ

fraction loss

RTT

m
s

50 100 150 200 250 300 350 400

50

100

%

0 50 100 150 200 250 300 350 400
Time(s)

m
s

0

0 50 100 150 200 250 300 350 400

0

−3

3

GCC rate

m(t): estimated delay gradient

link capacityTCP rate

(b) Adaptive threshold

Figure 11: One GCC flow vs one TCP flow. Bottleneck parameters: queue size T q = 350ms, link capacity C = 1000kbps

Effect of a concurrent TCP flow on the delay gradient. In this
paragraph we show that the threshold must be adaptive in order to
avoid the starvation of a GCC flow in the presence of a concurrent
loss-based flow. Towards this end, we consider a single GCC flow
with a concurrent long-lived TCP flow. We show that a static setting
of the threshold might lead to the starvation of the GCC flow. In
this scenario, the one way delay gradient can be expressed as the
sum of two components:

m(t) = mGCC(t) +mTCP(t) (22)

where mGCC(t) and mTCP(t) are the delay gradients of the
GCC and the TCP flow respectively. It can be shown that the
maximum delay gradient mTCP,M due to a TCP flow can be much
larger than that of a GCC flow [6]. Since in this casem(t) contains
the component mTCP(t), if mTCP(t) � mGCC(t) the GCC flow
will decrease the sending rate not due to the self-inflicted delay, but
due to the TCP flow.

Figure 11 shows a real experiment, conducted by employing the
testbed described in Section 5, in which a GCC flow competes
with a TCP Cubic flow over 1Mbps bottleneck link with a
drop-tail queue whose maximum queuing time is T q = 350ms.
Figure 11 (a) shows that, when a static threshold is used, the GCC
flow gets starved. In particular, when the TCP flow is started, m(t)
begins to oscillate above the threshold γ mainly due to the delay
gradient of the TCP flow mTCP(t), which triggers a large number
of overuse signals. Consequently, the remote rate controller FSM
enters the decrease mode which reduces the value of Ar according
to (3). On the other hand, Figure 11 (b) shows that the adaptive
threshold is able to solve the starvation issue and allows the GCC
flow to share the bottleneck fairly with the concurrent TCP flow. In
particular, after TCP is started, γ(t) follows m(t) with a smaller
time constant which avoids the generation of a large number of
consecutive overuse signals and prevents the starvation of the GCC
flow.

5. TESTBED
Figure 12 shows the experimental testbed employed to emulate a

WAN scenario. It consists of four Linux machines equipped with a
Linux kernel 3.16.0. Two nodes, each one running several sessions
of Chromium browsers4 and an application to generate or receive
TCP long-lived flows, are connected through an Ethernet cable.
With this configuration the behavior of GCC flows when competing
against TCP flows can be analyzed. Another node runs a web
server which handles the signaling required to establish the video
calls between the browsers. The last node is the testbed controller
that orchestrates the experiments via ssh commands. The testbed
controller undertakes the following tasks: 1) it places the WebRTC
calls starting the GCC flows; 2) it sets the link capacity C and the
bottleneck queue size T q on Node 1; 3) it sets the propagation delay
RTTmin on Node 2 5; 4) it starts the TCP flows when required.

The queue size qM on Node 1 has been set by considering the
maximum time required to drain the buffer T q , i.e. qM = T q · C.
The round trip propagation delay RTTmin = 50ms considered
as the sum of the propagation delays on the direct and reverse
path (25ms each) has been set on Node 2 through the NetEm
Linux module, whereas the bottleneck buffer size has been set
to T q = 300ms by following the evaluation criteria provided
in [25]. We have used a Token Bucket Filter (TBF) to set the
ingress link capacity C of Node 1. We have turned off the NIC
optimization parameters, i.e. TCP segmentation offload, jumbo
frames, generic segmentation offload, since they could interfere
with the experiments.

Video and TCP settings. The TCP sources employ the
CUBIC congestion control which is the default in Linux kernel.
The congestion window, the slow-start threshold, the RTT, and
the sequence number are logged. A Web server6 provides the
HTML page that handles the signaling between the peers using

4https://chromium.googlesource.com/chromium/src.git
5It is recommended to split the rate control from the delay
emulation
6https://apprtc.appspot.com/

Commands

Signaling

 Node controller 1

on/off

on/off

on/offTCP
Sinks

TCP
Sources

Node controller 2

Controller

Bottleneck

https://apprtc.appspot.com/

GCC flows (RTP/UDP)

TCP flows

on/off

Node 1 Node 2

C

RTTmin

T̄q

Traffic
shaper

shaper
Traffic

Figure 12: Experimental testbed

the WebRTC JavaScript API. The same video sequence is used
to enforce experiments reproducibility. To the purpose, we have
used the Linux kernel module v4l2loopback7 to create a virtual
webcam device which cyclically repeats the “Four People”8 YUV
test sequence. Chromium encodes the raw video source with
the VP8 video encoder9. We have measured that, without any
bandwidth limitation, VP8 limits the sending bitrate As(t) to a
maximum value of 2Mbps.

Metrics. In order to quantitatively assess the performance of
GCC we consider QoS metrics such as packet loss ratio, average
bitrate, and delay, which are known to be well correlated with
QoE metrics through, for instance, the IQX hypothesis [10].
Following this approach has the merit of focusing the discussion
on metrics that are not sensitive to application specific aspects,
such as the employed video encoder. Moreover, splitting the
evaluation of QoE metrics from QoS metrics also follows the
guidelines recently defined within the IETF RTP Media Congestion
Avoidance Techniques (RMCAT) working group. In particular, we
consider:

• Channel UtilizationU = Rr/C, whereC is the known link
capacity and Rr is the average received rate;

• Loss ratio l = (bytes lost)/(bytes sent);

• 50th and 95th percentile of queuing delay, measured as
RTT (t) − RTTmin over all the RTT samples reported in
the RTCP feedbacks during the experiments;

• Jain’s Fairness Index: JFI(t) =
(
∑N

i=1 xi(t))
2

N
∑N

i=1 xi(t)
2 , where

xi(t) is the measured instantaneous throughput of the i-th
flow and N is the total number of competing flows.

6. EXPERIMENTAL EVALUATION
This section presents the experimental results obtained

employing the testbed described in Section 5. The analysis
is based on the evaluation criteria under discussion in the
IETF WG RMCAT [25]. It is worth to mention that a much
7https://github.com/umlaeute/v4l2loopback
8https://people.xiph.org/~thdavies/x264_streams/FourPeople_
1280x720_30/
9http://www.webmproject.org/

0 50 100 150 200
0

1000

2000

k
b

p
s

GCC rate Capacity

0 50 100 150 200
0

200

400

m
s

0 50 100 150 200
0

25

50

Time(s)

%

fraction loss

RTT

Figure 13: Rate, RTT and fraction loss dynamics in the case of
a single GCC with variable link capacity

Metric Value
Channel Utilization 84%

Queuing Percentile (50th - 95th) 20ms - 195ms
Loss Ratio 0.02%

Table 1: Average value of the metrics measured in the case of a
single GCC with variable link capacity

broader experimental evaluation has been performed, but due to
space constraints we have decided to include only experimental
results of the scenarios defined in [25]. We argue that this
choice facilitates experimental comparisons with other algorithms
proposed in RMCAT. In particular, the goal is to check if GCC
satisfies the requirements defined in [24] i.e. low queuing in
the absence of competing heterogeneous traffic and a reasonable
share of bandwidth when competing with other homogeneous or
heterogeneous flows. For every scenario ten experiments have been
run. For each of them a Table is provided which contains the
average value of the metrics measured in the ten runs.

6.1 Single GCC with variable link capacity
This scenario investigates how quickly the video bitrate

controlled by GCC reacts to sudden changes of the link capacity.
For this purpose, we vary the link capacity every interval of 50
seconds. We consider four time intervals in which the capacity is
set respectively to 1Mbps, 2.5Mbps, 0.5Mbps, and 1Mbps, such
that the video call lasts 200s. Table 1 shows the average value of
the metrics measured throughout the ten experiments. Figure 13
shows the dynamics of the GCC rate, RTT, and fraction loss.
This experiment shows that GCC matches the time-varying link
capacity. It is important to observe that in the time interval in which
the capacity is set to 2.5Mbps, the GCC flow cannot match the
link capacity since the video encoder does not produce more than
2Mbps. Furthermore, GCC is able to contain the queuing delay
since the RTT is kept close to the round trip propagation delay
RTTmin = 50ms during the entire video call. We have measured
an average value of the 50th percentile of the queuing delay equal
to 20ms, whereas the 95th percentile is 195ms. We notice that, in
order to react to the link capacity drop, the algorithm has to reduce
the sending rate to keep a low queuing delay and loss ratio. When
the link capacity increases, GCC takes about 25 seconds to reach

0 50 100 150 200
0

1000

2000

3000

4000
k
b

p
s

Link Cap. Tot. Rate

Total Rate

GCC1 Rate GCC2 Rate GCC3 Rate

0 50 100 150 200
0

50

100

%

fr. loss 1 fr. loss 2 fr. loss 3

0 50 100 150 200

Time(s)

100
200
300
400

m
s

RTT1 RTT2 RTT3

Figure 14: Rate, fraction loss, and RTT dynamics in the case of
three concurrent GCC flows over a 3Mbps link

Metric Value
Cumulative Utilization 86%

Queuing Percentile (50th - 95th) 10ms - 61ms
Cumulative Loss Ratio 0%

Jain Fairness Index 0.93

Table 2: Average value of the metrics measured in the case of
three concurrent GCC flows over a 3Mbps link

the new link capacity value. This results in an average channel
utilization equal to 84%.

6.2 Intra-protocol fairness
The aim of this scenario is to investigate the GCC intra-protocol

fairness. Toward this end, we have considered three concurrent
GCC flows over a 3Mbps link. Each flow is started 30 seconds
after the other. The experiment lasts 200 seconds. Table 2 shows
the average value of the metrics measured over ten experiments
when all the three flows are active. Figure 14 shows the dynamics
for one experiment. This experiment shows that GCC is not
affected by the “late-comer effect” [7]; the three GCC flows fairly
share the link and the measured Jain Fairness Index approaches
0.93. Convergence can be intuitively shown by considering that the
equivalent estimated delay gradient measured by each flow is given
by:

m(t) = mGCC1(t) +mGCC2(t) +mGCC3(t) (23)

so that an increase of the delay gradient induced by one of the flow
triggers an “overuse signal” for any of the concurrent flows. Since
the bitrate is decreased according to (3), a flow with higher bitrate
will experience a higher rate reduction, thus eventually leading to
convergence. No packet is lost during the whole duration of the
experiment. Concerning the queuing delay, in this experiment we
have measured an average value of the 50th percentile equal to
10ms (RTTmin = 50ms), whereas the measured 95th percentile is
equal to 61ms.

To complete the investigation on the intra-protocol fairness we
consider a scenario with two flows in the case of a link with variable
capacity. The link capacity is varied every interval of 25 seconds.
We consider 5 intervals in which the capacity is set respectively to
4Mbps, 2Mbps, 4Mbps, 1Mbps and 2Mbps, such that the video call

0 20 40 60 80 100 120
0

2000

4000

k
b
p
s

Link Cap. Tot. Rate GCC Rate 1 GCC Rate 2

0 20 40 60 80 100 120
0

50

100

%

fraction loss 1

0 20 40 60 80 100 120
0

200

400

m
s RTT 1

0 20 40 60 80 100 120

Time(s)

0

200

400

m
s RTT 2

0 20 40 60 80 100 120
0

50

100

%

fraction loss 2

Figure 15: Rate, fraction loss and RTT dynamics in the case of
two GCC flows over a link with variable capacity

Metric Value
Cumulative Utilization 85%

Queuing Percentile (50th - 95th) 15ms - 103ms
Cumulative Loss Ratio 1%

Jain Fairness Index 0.87

Table 3: Average value of the metrics measured in the case of
two GCC flows over a link with variable capacity

lasts 125 seconds. Table 3 shows the average value of the metrics
measured over the ten experiments. Figure 15 shows the dynamics
of the variables in one experiment. The Jain Fairness index is equal
to 0.87, which confirms that GCC provides intra-protocol fairness.

6.3 One GCC flow with concurrent long-lived
TCP Flows

This scenario aims at testing the inter-protocol fairness. We have
considered one GCC flow against 99 long-lived TCP flows over
a bottleneck link with a constant capacity set equal to 100Mbps.
The video call lasts 400 seconds and the TCP flows are active
for 200 seconds in the time interval [100, 300] seconds. Table 2
summarizes the metrics obtained in the ten experiments measured
when the TCP flows are active. Figure 16 shows the dynamics
obtained by one of the experiment carried out. The figure shows
that, as soon as the TCP flows enter the bottleneck, the GCC
sending rate is reduced close to the fair share at 1Mbps and
oscillates around this value when the TCP flows are active. This
is made possible by the adaptive threshold (see Section 4.2) that,
by reducing the sensitivity of the delay-based controller, leads the
GCC flow to be controlled by both the loss-based and delay-based
algorithms in the presence of concurrent loss-based traffic. In

Metric Value
GCC Throughput 1.3Mbps

Queuing Percentile (50th - 95th) 250ms - 295ms
Loss Ratio 1.2%

Jain Fairness Index 0.81

Table 4: Average value of the metrics measured in the case of
one GCC flow sharing a 100Mbps link with 99 TCP flows

0

1000

2000

3000
k
b
p
s

TCP flows rate GCC Rate fair share

0

200

400

m
s

0

200

400

m
s

0 100 200 300 400

Time(s)

0

25

50

%

fraction loss

RTT TCP flows

RTT GCC flow

Figure 16: The case of one GCC flow sharing a 100Mbps link
with 99 TCP flows

0 50 100 150 200
0

500

1000

1500

2000

2500

k
b

p
s

TCP Active

Link Cap. Tot. Rate GCC1 Rate GCC2 Rate

0 50 100 150 200
0

25

50

%

fr. loss 1 fr. loss 2

0 50 100 150 200

Time(s)

100
200
300
400

m
s

3−flows fair share

2−flows fair share

Total GCC flows rate

RTT 1 RTT 2

Figure 17: Rate, fraction loss, and RTT dynamics of two GCC
flows in the presence of short-lived TCP flows

fact, the value of the fraction loss measured for the GCC flow is
greater than zero when the TCP flows are active confirming that the
algorithm is also operating in loss-based mode. As expected, the
queuing delay cannot be contained in the presence of TCP traffic
which tends to fills the bottleneck buffer hindering the real-time
interaction.

6.4 GCC flows in the presence of short-lived
TCP flows

The aim of this scenario is to investigate how the GCC flows
behave in the presence of short-lived TCP traffic. To the purpose,
we have considered two concurrent GCC flows over a 2Mbps link;
5 seconds after the beginning of the video calls we start one TCP
flow for 3 seconds every 12 seconds. This scenario is interesting
since the interaction among the flows differs from the case of
a long-lived TCP flow since the short-lived TCP flows provoke
several traffic bursts that are typical in the case of small file transfer
(i.e. web page download). Table 5 summarizes the metrics obtained
for the two GCC flows, whereas Figure 17 shows the dynamics of
one experiment: during the time interval in which the TCP flow is
active (depicted in gray) the RTT increases due to the TCP flows

Metric Value
GCC flows Utilization 72%

Queuing Percentile (50th - 95th) 109ms - 285ms
Loss Ratio 0.7%

Jain Fairness Index 0.78

Table 5: Average value of the metrics measured in the case of
two GCC flows in the presence of short-lived TCP flows

0 20 40 60 80 100
0

500

1000

k
b
p
s

GCC Rate

TCP Active on Backward Path

Capacity

0 20 40 60 80 100

100

200

300

400

m
s

RTT

0 20 40 60 80 100
0

50

100

Time(s)

%

0 20 40 60 80 100

−1

0

1
m

s

fraction loss 1

γγm(t): estimated delay gradient

Figure 18: Rate, fraction loss, RTT and delay gradient
dynamics for the GCC flow on the direct path

that inflate the bottleneck buffer. When the TCP traffic is not
present the GCC flows sending rates increase up to 1Mbps which
is the ideal bandwidth fair-share for two concurrent flows. When
TCP is started the sending rate of the flows is reduced due to the
induced delay inflation. Therefore, the overall channel utilization
measured for the two GCC flows is equal to 72%.

6.5 The Effect of Reverse Traffic
This scenario assesses the effect of reverse traffic on the metrics.

For this purpose, a video call is established on the direct path,
whose capacity is 1Mbps, for 100 seconds. During the call, on
a 1Mbps reverse path link, a TCP flow is started for 40 seconds.
Table 6 summarizes the average value of the metrics obtained for
the GCC flows considering all the runs. Figure 18 shows one
experimental result dynamics: we depict in gray the time interval
during which the TCP flow is active on the reverse path. This
test clearly shows that the GCC rate and the fraction loss are not

Metric Value
Channel Utilization 90%

Queuing Percentile (50th - 95th) 10ms - 159ms
Loss Ratio 0%

Table 6: Average value of the metrics measured for the GCC
flow on the direct path

affected by the reverse traffic. This is due to the fact that the
estimated delay gradient on the direct path is not affected by the
presence of reverse traffic, even though the RTT inflation confirms
the TCP flow presence. The average channel utilization measured
on the direct path is 90%. The median queuing delay measured on
the direct path is 10ms and the 95th percentile is 159ms.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a congestion control algorithm

for real-time flows that is currently used in Google Hangouts.
We have carried out an experimental evaluation based on the
guidelines under definition in the IETF RMCAT working group.
Results obtained using Google Chromium browser show that: 1) it
adapts the sending rate to track the link capacity, 2) it provides
intra-protocol and inter-protocol fairness with long and short-lived
TCP flows and 3) it is not affected by reverse traffic. As future work
we plan a massive measurement campaign involving a large set of
Chrome users.

8. ACKNOWLEDGMENTS
This work has been partially supported by the Italian Ministry

of Education, Universities and Research (MIUR) through the
MAIVISTO project (PAC02L1 00061). Any opinions, findings,
conclusions or recommendations expressed in this material are the
authors’ and do not necessarily reflect the views of the funding
agencies.

9. REFERENCES
[1] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan. Webrtc

1.0: Real-time communication between browsers. W3C Working
Draft, Feb. 2015.

[2] R. Bos, X. Bombois, and P. M. Van den Hof. Designing a Kalman
filter when no noise covariance information is available. In Proc. of
the 16th IFAC World Congress, volume 16, pages 212–212, Jul. 2005.

[3] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion
avoidance on a global Internet. IEEE Journal on Selected Areas in
Communicationss, 13(8):1465–1480, Oct. 1995.

[4] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl. Reducing
Internet Latency: A Survey of Techniques and their Merits. IEEE
Comm. Surveys & Tutorials, in press.

[5] E. Brosh, S. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne. The
Delay-Friendliness of TCP for Real-Time Traffic. IEEE/ACM
Transactions on Networking, 18(5):1478–1491, Oct. 2010.

[6] G. Carlucci, L. De Cicco, and S. Mascolo. Modelling and Control for
Web Real-Time Communication. In 53rd IEEE Conference on
Decision and Control, Los Angeles, CA, USA, Dec. 2014.

[7] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti. The Quest for
LEDBAT Fairness. In IEEE Global Telecommunications Conference,
pages 1–6, Dec. 2010.

[8] L. De Cicco and S. Mascolo. A mathematical model of the Skype
VoIP congestion control algorithm. IEEE Transactions on Automatic
Control, 55(3):790–795, Mar. 2010.

[9] J. Durbin and S. J. Koopman. Time series analysis by state space
methods. Oxford University Press, 2012.

[10] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quantitative
relationship between quality of experience and quality of service.
IEEE Network, 24(2):36–41, 2010.

[11] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital control of
dynamic systems, volume 3. Addison-wesley Menlo Park, 1998.

[12] L. A. Grieco and S. Mascolo. Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP congestion
control. ACM SIGCOMM CCR, 34(2):25–38, Apr. 2004.

[13] A. Gurtov and S. Floyd. Modeling wireless links for transport
protocols. ACM SIGCOMM CCR, 34(2):85–96, Apr. 2004.

[14] D. A. Hayes and G. Armitage. Revisiting TCP Congestion Control
Using Delay Gradients. In Proceedings of the 10th International
IFIP TC 6 Conference on Networking - Volume Part II, pages
328–341, Jul. 2011.

[15] S. Holmer, H. Lundin, G. Carlucci, L. De Cicco, and S. Mascolo.
Google Congestion Control Algorithm for Real-Time
Communication on the World Wide Web. IETF Draft, June 2015.

[16] R. Jain. A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks. ACM SIGCOMM
CCR, 19(5):56–71, Oct. 1989.

[17] I. Johansson. Self-clocked Rate Adaptation for Conversational Video
in LTE. In Proceedings of the 2014 ACM SIGCOMM Workshop on
Capacity Sharing Workshop, pages 51–56, Chicago, Illinois, USA,
Aug. 2014.

[18] A. Kuzmanovic and E. Knightly. TCP-LP: low-priority service via
end-point congestion control. Networking, IEEE/ACM Transactions
on, 14(4):739–752, Aug 2006.

[19] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based
Congestion Control for the Datacenter. ACM SIGCOMM CCR,
45(5):537–550, Oct. 2015.

[20] M. Nagy, V. Singh, J. Ott, and L. Eggert. Congestion Control Using
FEC for Conversational Multimedia Communication. In Proceedings
of the 5th ACM Multimedia Systems Conference, pages 191–202,
Singapore, Mar. 2014.

[21] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen. Flicker
effects in adaptive video streaming to handheld devices. In Proc. of
ACM International Conference on Multimedia, pages 463–472, Nov.
2011.

[22] K. Nichols and V. Jacobson. Controlling queue delay. Queue, ACM,
10(5):20:20–20:34, May 2012.

[23] R. S. Prasad, M. Jain, and C. Dovrolis. On the effectiveness of
delay-based congestion avoidance. In Proc. of Workshop on
Protocols for Fast Long-Distance Networks, volume 4, Feb. 2004.

[24] J. Randell and Z. Sarker. Congestion control requirements for
RMCAT. Draft IETF, Dec. 2014.

[25] Z. Sarker, V. Singh, X. Zhu, and R. M. Test Cases for Evaluating
RMCAT Proposals. IETF Draft, Aug. 2015.

[26] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low extra
delay background transport (LEDBAT). RFC 6817, Dec. 2012.

[27] D. Sisalem and A. Wolisz. Lda+: a tcp-friendly adaptation scheme
for multimedia communication. In IEEE International Conference on
Multimedia and Expo, volume 3, pages 1619–1622 vol.3, Aug. 2000.

[28] R. Srikant. The mathematics of Internet congestion control. Springer
Science & Business Media, 2012.

[29] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia
streaming via tcp: An analytic performance study. ACM Trans.
Multimedia Comput. Commun. Appl., 4(2):16:1–16:22, May 2008.

[30] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: motivation,
architecture, algorithms, performance. IEEE/ACM Transactions on
Networking, 14(6):1246–1259, 2006.

[31] K. Winstein and H. Balakrishnan. TCP Ex Machina:
Computer-generated Congestion Control. ACM SIGCOMM CCR,
43(4):123–134, Oct. 2013.

[32] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular
Networks. In Proc. of USENIX NSDI, Apr. 2013.

[33] Y. Xu, C. Yu, J. Li, and Y. Liu. Video Telephony for End-Consumers:
Measurement Study of Google+, iChat, and Skype. IEEE/ACM
Transactions on Networking, 22(3):826–839, Jun. 2014.

[34] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg. Adaptive
congestion control for unpredictable cellular networks. ACM
SIGCOMM CCR, 45(5):509–522, Oct. 2015.

[35] X. Zhu, R. Pan, S. Mena, P. Jones, J. Fu, S. D’Aronco, and
C. Ganzhorn. Nada: A unified congestion control scheme for
real-time media. IETF Draft, Mar. 2015.

