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ABSTRACT
Cloud gaming has been recognized as a promising shift in
the online game industry, with the aim being to deliver high-
quality graphics games to any type of end user device. The
concepts of cloud computing are leveraged to render the
game scene as a video stream which is then delivered to
players in real-time. Given high bandwidth and strict la-
tency requirements, a key challenge faced by cloud game
providers lies in configuring the video encoding parameters
so as to maximize player Quality of Experience (QoE) while
meeting bandwidth availability constraints. In this paper
we address this challenge by conducting a subjective labo-
ratory study involving 52 players and two different games
aimed at identifying QoE-driven video encoding adaptation
strategies. Empirical results are used to derive analytical
QoE estimation models as functions of bitrate and fram-
erate, while also taking into account game type and player
skill. Results have shown that under certain identified band-
width conditions, reductions of framerate lead to QoE im-
provements due to improved graphics quality. Given that
results indicate that different QoE-driven video adaptation
policies should likely be applied for different types of games,
we further report on objective video metrics that may be
used to classify games for the purpose of choosing an appro-
priate and QoE-driven video codec configuration strategy.

CCS Concepts
•Information systems → Multimedia streaming;
•General and reference→Measurement; Empirical stud-
ies;
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The cloud gaming paradigm is commonly characterized
by game content delivered from a server to a client as a
video stream, with game controls sent from the client to
the server. The execution of the game logic, rendering of
the 3D virtual scene, and video encoding are performed at
the server, while the client is responsible for video decoding
and capturing of client input. While such a game streaming
paradigm significantly reduces the end client device require-
ments as compared to “traditional” online gaming and thus
allows for the delivery of graphically-rich games to less pow-
erful client devices, the downlink bandwidth requirements
are significantly increased. Furthermore, gaming in general
is a highly interactive service, thus imposing strict latency
requirements. In the case of cloud gaming, meeting these
requirements becomes very challenging (e.g., under 150ms
of RTT is needed for good quality of First Person Shooter
games [9]), with the need to calculate game state, render
the virtual scene, and encode/decode the video stream. The
available time budget (i.e., 150 ms) is used by network delay,
virtual world state calculation, 3D scene rendering, video en-
coding on the server and decoding on the client side. There
is thus not enough time for the server-side video encoder to
optimize the bandwidth size of the sent video stream.

With available network resources varying over time, sub-
ject to issues such as varying access network conditions or
a varying number of players accessing a bottleneck link,
there is a need for efficient and dynamic service adaptation
strategies on the game server to meet different bandwidth
availabilities. A challenge faced by cloud gaming providers
is configuration of the video encoding parameters used for
game streaming with respect to different available network
bandwidth conditions. As stated by Hong et al. [11], the
cloud gaming server has no control over network latency,
with packet loss and end-to-end delays resulting in lower
effective bandwidth measured by the server. Hence, codec
reconfiguration decisions made by the cloud gaming server
(in terms of chosen target bitrate and framerate values) are
driven by measured available effective bandwidth. Previous
studies have shown that the codec configuration strategy is
dependant on different game types [11, 20], with one possi-
bility of classifying game genres being according to similar
video and gameplay characteristics [14].

In this paper we build on both the results reported in [11]
and in [20] with the aim of specifying video encoding adap-
tation strategies applicable in the context of cloud gaming.
Hence, the problem we are looking to address is how to adapt
the video encoding parameters of the game video stream in



light of decreased bandwidth availability, while maximizing
the end user Quality of Experience (QoE). Furthermore, in-
sight into how different encoding parameters impact QoE
can be useful to cloud gaming providers in terms of poten-
tial resource savings (e.g., if QoE remains high even while
decreasing framerate to 25 fps for a certain type of game
and available bandwidth, then there is no need to stream at
60 fps). We use empirical results obtained from a controlled
subjective laboratory study involving 52 participants and
two game types to derive analytical QoE estimation models
as functions of bitrate and framerate. We further consider
the impact of contextual factors including game type and
player skill on QoE model specification. In addition to sub-
jective scores, we report on objective video metrics aimed to
characterize the different games used for test purposes.

The paper is organized as follows. In Section 2 we give
a comparative summary of related studies that are relevant
for modeling and managing QoE in the context of cloud
gaming. In Section 3 we present the test methodology used
to conduct subjective user studies, including the laboratory
setup, participants, and test content. Section 4 gives an
overview of obtained subjective scores, which are used to
derive QoE estimation models based on assigned framerate
and bitrate. Moreover, based on video traces collected dur-
ing gameplay, we extract spatial and temporal video met-
rics, aimed at objectively classifying different games for the
purpose of choosing an appropriate and QoE-driven video
codec configuration strategy. Section 5 provides concluding
remarks and directions for ongoing and future work.

2. RELATED WORK
Over the past years there have been significant research

efforts in the domain of cloud gaming aimed at studying the
relationships between end-user QoE and various network,
service, and context factors. While many earlier studies fo-
cused on traditional online gaming have provided insight
into user-level requirements in terms of factors such as per-
ceived end-to-end latency [4], cloud gaming traffic is inher-
ently different and thus calls for new studies to determine
how certain network (e.g., latency, loss) or application-level
(e.g., video encoding, content) factors map to user perceived
quality metrics. In Table 1 we give a detailed overview
of subjective studies that have focused on measuring and
modeling QoE for cloud gaming. The table contains, for
each work, the information about the platform on which the
tests have been conducted, influence factors which have been
tested (e.g., latency, frame rate), number of test participants
in the study, measurement methodology, and identified re-
sults relevant for QoE modelling.

In terms of test platform used, numerous studies have
been conducted using the GamingAnywhere platform, an
open cloud gaming system that allows researchers to per-
form repeatable experiments and confirm reliability of their
study findings [2, 7, 11, 19]. Other platforms used have in-
cluded Steam [20], OnLive [7, 14, 8, 18], Ubitus [24], or other
experimentally set-up platforms.

With respect to tested QoE influence factors, a large num-
ber of studies have focused on the impacts of latency and/or
packet loss on user perceived quality [7, 19, 24, 15, 13, 18,
8, 17, 14, 23], while fewer studies have addressed the impact
of different video encoding configurations on QoE [11, 20,
15, 2, 23]. Furthermore, while certain studies are focused
on developing models for estimating actual user QoE [23],

Figure 1: Laboratory testbed

such models can be too complex (in terms of number of pre-
dictors considered) and thus not applicable in the context
of application and cloud resource adaptation (i.e., when at-
tempting to reconfigure video codec parameters on the fly)
[11]. Finally, due to the high complexity of modeling gaming
QoE given a wide range of game genres, end user skill levels,
and end user device capabilities, challenges lie in collecting
empirical ground truth data to be used for deriving accurate
and applicable QoE estimation models [16].

As stated previously, in this paper we aim to build on and
complement the results given in [11] and in [20] with the
aim of contributing to further insight into video encoding
adaptation strategies. We note the following key differences
with respect to these studies:

1. While Hong et al. [11] use a crowdsourcing approach
(which yields a large number of subjective ratings but
without a controlled environment), we conduct tests in
a controlled lab environment with all users playing on
the same equipment, so as to eliminate the noise due
to players playing using heterogeneous network and
device conditions;

2. We test different games than those tested in [11], and
look to compare with the previously published QoE
modeling results. As compared with [20], we test one of
the same games, but at different bitrate and framerate
levels;

3. We use the Steam platform as opposed to the GA
platform used in [11] so as to test commercial-grade
streaming software;

4. We conduct tests at higher framerate and bitrate con-
ditions, thus covering a different spectrum of test con-
ditions as compared to both [11] and [20], and

5. We address the impact of user skill level on QoE, which
is not explicitly addressed in [11]. Moreover, while
skill level is addressed in [20], we conducted tests at
different test conditions (higher bitrate and framerate
levels) so as to determine deeper insight into thresholds
corresponding to perceived QoE degradations.

Further discussions are given in Section 4.



Table 1: Overview of studies addressing cloud gaming QoE

Author
(Year)

Cloud
gaming
plat-
form

Tested QoE influence factors

Number of
test

participants
and type of
QoE study

QoE measurement
methodology

Relevance for QoE
modeling

Network
factors

Video
factors

Context
factors

Hong et
al (2015)

[11]
GA -

Frame
rate,

bitrate
Game genre

101;
crowdsourced

study
7-pt. ACR scale

Proposed gaming QoE
MOS (Mean Opinion

Score) model as a
quadratic function of

video encoding parameters
(frame rate, video bitrate)

Slivar et
al (2015)

[20]

Steam
platform

-
Frame
rate,

bitrate

Game genre,
player skill

15;
controlled lab
environment

5-pt. ACR scale;
Overall QoE and its
features, willingness

to play

Modelled QoE as a linear
function of video frame

rate and bitrate

Claypool
et al

(2014)
[7]

OnLive
& GA

Latency -

Game genre,
different type
of end-user’s

device

49 (OnLive),
34 (GA);

controlled lab
environment

7-pt. ACR scale
(OnLive);

5-pt. ACR scale
(GA); Gameplay

experience

Cloud-based games
(regardless of the genre)

are as sensitive to latency
as FPS games in

traditional online gaming
(the most sensitive genre)

Slivar et
al (2014)

[19]
GA

Latency,
packet

loss
- Player skill

35;
controlled lab
environment

5-pt. ACR scale;
Overall OoE and its

degradations,
willingness to play

Modelled QoE as a linear
function of network delay

and packet loss

Wen et
al (2014)

[24]
Ubitus

Latency,
band-
width

-

Game genre,
PC set-up,

game special
effects

14;
controlled lab
environment

5-pt. ACR scale;
Video and gameplay
smoothness, graphics

quality

MOS of all measured QoE
components are strongly
corellated with network

delay

Liu et al
(2014)

[15]

Exper.
set-up

Latency,
packet

loss

Frame
rate,

bitrate

Game genre,
game content

(view
distance,

texture detail,
etc.)

18 (first
study), 23

(second
study);

controlled lab
environment

5-pt. ACR scale;
CMR-MOS

Proposed a content-aware
model for mobile cloud
gaming as a function of
graphic rendering, video
encoding and networking

factors
Ahmadi

et al
(2014)

[1]

- - -
Game genre,
game content

20;
controlled lab
environment

5-pt. ACR scale
Proposed a game attention
model for efficient bitrate
allocation in cloud gaming

Beyer et
al (2014)

[2]
GA - Bitrate -

32;
controlled lab
environment

GEQ, EEG

Low video quality imposed
by low video bitrate has

significant effect on
participant’s satisfaction

Jarschel
et al

(2013)
[13]

Exper.
set-up

Latency,
packet

loss
- Game genre

58;
controlled lab
environment

5-pt. ACR scale;
Overall QoE,

willingness to pay

Identified key influence
factors for cloud gaming

QoE

Quax et
al (2013)

[18]
OnLive Latency - Game genre

8;
controlled lab
environment

7-pt. Likert scale &
GSR;

Perceived gameplay
experience,

enjoyment and
frustration

Latency has similar
impact on QoE for the

different genres in cloud
gaming as in traditional

online gaming

Clincy et
al (2013)

[8]
OnLive

Latency,
packet

loss
- -

50;
controlled lab
environment

5-pt. ACR scale;
8 categories of QoE
used to derive QoE

index;

FPS games require lossless
connection with latency

lower than 120ms to
satisfy players

Möller et
al (2013)

[17]

Exper.
set-up

Latency,
packet
loss,

band-
width

-
Game genre,
player skill

19;
controlled lab
environment

7-pt. ACR scale;
7 quality aspects of

QoE

Complexity of activity in
game scene should be

considered as influencing
factor on QoE

Lee et al
(2012)

[14]
OnLive Latency - Game genre

15;
controlled lab
environment

fEMG

Proposed a model that
can predict real

time-strictness of a game
based on user input rate

and game dynamics

Wang et
al (2009)

[23]

Exper.
set-up

Latency,
packet

loss

Frame
rate,
video

resolu-
tion

Game genre
21 & 15;

controlled lab
environment

GMOS (Game Mean
Opinion score)

Proposed a model for
mobile cloud gaming user

experience based on
manipulated factors in the

study



Figure 2: Comparison of game characteristics for Serious
Sam 3 and Hearthstone. Points on the different axis repre-
sent different levels as described in the text.

3. METHODOLOGY

3.1 Subjective tests
The QoE study consisted of participants taking part in a

two and a half hour long gaming session that was conducted
in a laboratory environment as shown in Figure 1. Valve’s
Steam In-Home streaming platform was used as the cloud
gaming environment 1 the Steam client application was in-
stalled on all PCs in the laboratory, thus converting PC1-
PC4 (Windows 7 desktops, each with Intel 3.3 Ghz i3 pro-
cessor, 4GB RAM and GIGABYTE Radeon R7 250 graphic
card) to Steam In-Home Streaming clients (cloud gaming
clients) and PC5-PC8 (Windows 8 desktops, each with In-
tel 3.6 Ghz i7 processor, 8GB RAM and ASUS GT740 OC
graphic card) to Steam In-Home Streaming servers (cloud
gaming servers). Each of the clients had a corresponding
Steam In-Home Streaming server associated, therefore four
participants were able to play simultaneously during the ex-
periments.

Two games were played in the study as follows: Serious
Sam 3 (SS3), representing a fast paced first person shooter
game, and Hearthstone (HS), a relatively slow paced card
game. We illustrate the differences between these two games
in Figure 2 and according to the following characterization
dimensions (inspired by the categorization given in [21]):
number of players, input rate, gameplay pace, camera per-
spective, graphics detail, and mobility of avatars. Each di-
mension is divided into five levels, except for camera per-
spective, which is divided into three levels based on [5]. The
number of players is divided into five levels (from 1 to 5):
single player games, two-player games, games intended for
up to ten players, games intended for up to 100 players, and
games for more than 100 players. In this dimension HS is
placed into category 2 and SS3 into category 3. Input rate
is divided based on average action per minute rate (APM)
into the following categories: <10 APM, between 10 and 20
APM, between 20 and 30 APM, between 30 and 40 APM,
and 50 and more APM. In this dimension HS is placed into
category 1 and SS3 into category 5. The gameplay pace is

1Steam In-Home streaming, http://store.steampowered.
com/streaming/

specified based on the rate of the events in the game which
require player reaction. In this dimension, HS is placed into
category 1 as the pace is very low (usually players need to
react to 1 or 2 events in 70 seconds). SS3 is placed into cat-
egory 5 as the rate of events (i.e., attackers in the game) can
be even multiple in one second. We opted to use these two
games in our study as they represent two ends of the spec-
trum on many of the defined dimensions. Both games were
played in HD-ready resolution (720p) with default graphics
settings.

The participants in our subjective tests were 52 students
enrolled at the University of Zagreb, 38 male and 14 female
adults, aged between 21 and 26 (median age 23). Prior to
the experiments being conducted, the participants were in-
structed to fill in an online questionnaire, so as to obtain rel-
evant information about their previous overall gaming expe-
rience and gaming experience relevant to the tested games.
As a result, 16 novice, 22 intermediate skilled and 14 self
reported experienced players took part in the study. Since
previous studies for traditional online gaming have shown
that players’ group composition based on previous gaming
experience has an impact on perceived QoE [22], test groups
were formed accordingly to investigate if this phenomenon
occurs similarly in cloud gaming. The participants were or-
ganized in 13 groups with 4 players in each group, based on
their reported gaming experience (skill). Each of the formed
heterogeneous groups had one novice and one experienced
player, while homogeneous groups consisted of 4 players with
the same gaming skill level.

As stated previously, our focus in this paper is not on
analysing the impact of network parameters on cloud gaming
(as has been addressed in many previous studies), but rather
on the investigation of the impact of video encoding param-
eters on QoE, with a focus on the cloud game provider per-
spective. Therefore, we manipulated video frame rate and
bitrate, consequently controlling/influencing image quality
and smoothness of gameplay. Our aim was to investigate
how and to what extent these parameters affect perceived
QoE for different types of games, with the ultimate goal
being to use this information to derive codec configuration
strategies and optimized resource allocation (from a net-
work/service provider standpoint), while at the same time
preserving high QoE. For the manipulation of video frame
rate, we decided to use four levels of frame rate: 25 fps,
35 fps, 45 fps and 60 fps. In the aforementioned previous
studies [11, 20], the lower end of the fps spectrum was in-
vestigated, so we opted for relatively higher values of frame
rate, which coincides with the expectations of average expe-
rienced gamers regarding video frame rate. As far as video
bitrate is concerned, we selected three levels for the experi-
ments: 3 Mbps, 5 Mbps and 10 Mbps. Both framerate and
bitrate were manipulated through Steam’s developer con-
sole. We note that we had to limit ourselves to a certain
number of test conditions, constrained by the length of sub-
jective testing sessions. Additional test conditions would
potentially lead to overly lengthy gaming sessions and pos-
sibly player fatigue. The chosen test conditions were based
on our aim to complement previous studies, in the sense
that we address conditions under which the impact of dif-
ferent bitrate/framerate combinations on QoE has not been
well studied. Furthermore, prior the user study, we con-
ducted tests to check if our testbed set-up has sufficient
hardware and software capabilities necessary to support all



Figure 3: Subjective ratings of overall QoE (95% CI)

tested games and conditions. We measured performance
(frame rate) of our testbed for each tested condition and
it proved sufficient for all conditions.

Considering manipulated video encoding parameters and
different games, a total of 24 different test conditions were
investigated during this study, with all conditions tested by
each test group. To avoid bias of manipulated video pa-
rameters, the sequence of test scenarios was randomized
for each group. At the very beginning of the experiment,
the participants were familiarized with the concept of cloud
gaming and the Steam In-Home Streaming service. All the
participants from each test group were seated in the same
experimental room, with PCs located next to each other
in one row (the participants could see each others screens
and communicate with each other during experiments). Be-
fore tests started, the participants were given a short time
to familiarize with game specific mechanics and the chosen
map. The first 12 test scenarios involved playing one round
of SS3 cooperative survival mode on a single map. During
these test scenarios, it was expected from the participants
to cooperate with each other to survive longer on the map.
Each of these 12 test scenarios lasted on average from 2
to 5 minutes, depending on how long players from the test
group survived. After finishing each test scenario, the par-
ticipants were instructed to report overall QoE, perceived
graphics quality and perceived fluidity of gameplay (on a 5-
pt. ACR scale). Fluidity was explained as referring to the
perception of the smoothness in the rendering of the virtual
scene. Additionally, participants also reported their will-
ingness to continue playing under the given test conditions
for the current test scenario (yes/no). We also recorded the
survival time for each player. While participants were filling
in questionnaires, the test administrator changed the video
encoding parameters by running scripts on the player’s PCs.
The second half of the experiment involved playing HS. HS
is a digital card game that consists of turn-based matches
between two players. For that reason, an opponent from the
group was assigned to each player by the test administra-
tor. In the case of HS, each test scenario lasted 3 minutes,
after which the participants filled in a questionnaire and con-
tinue playing the ongoing match. The entire gaming session
(with a 10-minute break allotted in the middle) lasted ap-

proximately two and a half hours, depending on the group’s
performance during the SS3 test scenarios. We note that
that potential order effects may have occurred during ex-
periments due to the experimental design (order of games).

3.2 Video characterisation
To be able to empirically quantify the differences between

the two tested games and relate them to QoE, we anal-
ysed both temporal and spatial characteristics of their video
streams. The first set of metrics is extracted according
to ITU-T recommendation P.910 (4/2008): Spatial percep-
tual information (SI) and Temporal perceptual information
(TI) [12]. The second set of metrics is extracted accord-
ing to [3]: Percentage of Forward/backward or Intra-coded
Macroblocks (PFIM) for the temporal aspect of the video
(motion in subsequent images), and Intra-coded Block Size
(IBS) for the spatial aspect of video (scene complexity).

SI is derived based on the Sobel filter. Each video frame
(luminance plane) at time n (Fn) is first filtered with the So-
bel filter [Sobel(Fn)]. The standard deviation over the pix-
els (stdspace) in each Sobel-filtered frame is then computed.
This operation is repeated for each frame in the video se-
quence and results in a time series of spatial information of
the scene. The maximum value in the time series (maxtime)
is chosen to represent the spatial information content of the
scene. This process can be represented in equation form as:

SI = maxtime{stdspace[Sobel(Fn)]} (1)

More details in the frame will result in higher values of SI.
TI is based upon the motion difference feature, Mn(i, j),

which is the difference between the pixel values (of the lumi-
nance plane) at the same location in space but at successive
times or frames. Mn(i, j) as a function of time (n) is defined
as:

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (2)

Fn(i, j) is the luminance value of the pixel at the ith row and
jth column of nth frame in time. The measure of temporal
information (TI) is computed as the maximum over time
(maxtime) of the standard deviation over space (stdspace) of
Mn(i, j) over all i and j.

TI = maxtime{stdspace[Mn(i, j)]} (3)



Figure 4: Aggregated subjective ratings for each game under
different video configurations

More motion in adjacent frames will result in higher values
of TI. For scenes that contain scene cuts, two values may be
given: one where the scene cut is included in the temporal
information measure, and one where it is excluded from the
measurement (in our case no scene cuts were not present
and normal gameplay was recorded). TI and SI metrics have
been extracted through predefined Matlab scripts (authored
by Savvas Argyropoulos).

The logic behind PFIM and IBS metrics is as follows: A
video with visual changes from frame to frame will have
these changes encoded (either by neighbouring blocks or
independently of other blocks), while video without visual
changes can skip much of the encoding (PFIM) and if the
scene is simple, there is not much information to be encoded.
As a result, the intra-coded block size will be small. If the
scene is complicated, the IBS will be large to contain all the
information. PFIM and IBS metrics were extracted using
python scripts created by Mark Claypool [3].

4. RESULTS

4.1 Subjective results
Figure 3 shows the average subjective ratings of overall

QoE for SS3 and HS across all test conditions. First of
all, it can be observed that there is a significant difference
between overall QoE for both games: HS has on average
higher scores of overall QoE for all test conditions in com-
parison with SS3, with the average QoE score never going
below 4.0 for any given test scenario. Furthermore, we ob-
serve that neither lowering video frame rate nor video bitrate
had a significant impact on perceived QoE during HS gam-
ing sessions. We can assume that during our experiments,
the manipulated frame rate and bitrate values were high
enough that the participants did not perceive QoE degra-
dations for HS. On the other hand, average QoE scores for
SS3 are significantly lower than HS QoE scores for each of
the test scenarios, with only one test scenario (the case with
60 fps and 10 Mbps) averaging more than 4.0 score. More-
over, it can be noticed that manipulation of video encod-
ing parameters significantly affects perceived QoE for SS3
gaming sessions: when bitrate values are high enough (10
Mbps), lowering frame rate leads to degradations of QoE.
SS3 is a representative fast paced first person shooter game,
thus degradations of fluidity (smoothness of gameplay), in-
troduced by lowering frame rate, have a higher impact when
the bitrate is high enough to support transmission of high

Figure 5: Willingness to continue playing under different
test conditions for both tested games

quality video. However, for low bitrate levels (3 Mbps), av-
erage scores of perceived QoE are ascending with reductions
of frame rate (down to 25 fps). This can be attributed to the
fact that 3 Mbps bitrate is not high enough to preserve good
enough video quality, so even though fluidity is very impor-
tant for fast paced games, the participants do not tolerate
low graphics quality and thus prefer an increase in graphics
quality at the expense of lowering the fluidity of gameplay
for these scenarios. Given these results, we see that different
encoding strategies may be employed for different games to
maintain high player QoE.

Besides collecting data about overall QoE scores we col-
lected data about user perceived fluidity and graphics qual-
ity (such measures have also been reported in related work
[11]). A heatmap overview of collected data (Figure 4) shows
the mean scores for overall QoE, graphics quality and flu-
idity. There is a very large correlation between the mea-
sured metrics indicating that players form an opinion about
the test scenario and score the different dimensions based
on this opinion. It can be noticed that the HS MOS score
for overall QoE and its features (fluidity, graphics quality)
are on average much higher and are prone to minor changes
due to manipulation of video parameters in comparison with
MOS scores for SS3. This further supports the claim that
the majority of players do not easily perceive QoE degra-
dations while playing a slow paced game such as HS at a
higher spectrum of test conditions.

In addition to differences in aggregated scores, there is also
a large discrepancy in the number of test scenario where the
participants were not willing to continue playing under cur-
rent test conditions between tested games, as shown in Fig-
ure 5: for SS3, there were 218 occurrences (from 624 overall)
when players stated they would not continue playing under
the given conditions, while for HS there were only 13 cases
(from 624 overall) when players stated they would quit play-
ing. It can be observed that for 3 Mbps and 60 fps 73.1%
of players were not eager to continue playing SS3, while for
HS under the same test conditions only 1.9% players wanted



Figure 6: Subjective ratings of overall QoE (95% CI) for SS3
and HS grouped by skill

to quit playing. Additionally, we observe that at a bitrate
of 3 Mbps, a decrease in frame rate actually results in an
increase in the percentage of players reporting they would
continue playing SS3, whereas for HS the same manipula-
tion of frame rate does not result with such an increase in
the percentage of players willing to continue playing. This
furthermore confirms the need for deriving video encoding
adaptation strategies for different types of games when aim-
ing to optimize end user QoE. Given the length of the user
study (2.5 hrs), we also tested whether there was an impact
on user fatigue and trends in user ratings from beginning to
the end of the test session. Thus, we compared the overall
user ratings for conditions tested early in the test session
and those tested late in the session (note test ordering was
randomized). No clear differences or trends were observed.

4.1.1 User parameters
Another goal of our study was to examine the impact

of user parameters on QoE, primarily in terms of player’s
previous gaming experience. Overall QoE ratings for SS3
and HS grouped by player experience are shown in Figure
6. While experienced players gave on average slightly lower
QoE scores in accordance with the introduced QoS degrada-
tions in comparison with less experienced players, the confi-
dence intervals are overlapping so no clear statistical distinc-
tion can be made. On the other hand, reported overall QoE
scores for intermediate players varies. In case of SS3, inter-
mediate players have on average slightly higher scores than
novice players, but in case of HS we observe that their scores
are slightly lower when compared with experienced players.
We note that the ratings in Figure 6 represent aggregate
scores. When analysed on a per test scenario basis (Fig-
ure 7), experienced players tended to give lower scores for
lower quality scenarios, and higher scores for higher quality
scenarios, as opposed to novice players. This may be at-
tributed to the hypothesis that novice players are generally
less sensitive to different quality variations (this was also
visible when considering the distributions of scores across
all scenarios per skill level).

We further compare the overall QoE scores of experienced
players considered in this study with the results from the
study reported in [20] which considered only experienced
players. A comparison of scores is given in Figure 8, show-

Figure 7: Mean ratings of overall QoE per skill level for
different test scenario (scenarios arranged according to as-
cending mean QoE

Figure 8: MOS scores for different frame rates at a fixed
bitrate of 10 Mbps for SS3

ing average QoE ratings for different fps conditions at a set
bitrate of 10 Mbps. We note differences between method-
ologies (e.g., different tested fps levels) and context (single-
player mode was used in [20] while multiplayer mode was
used in this study). In [20], the range of tested frame rates
was 15 – 30 fps, while in this study we tested 25 – 60 fps.
Consequently, the “best” scenarios observed by players (in
terms of fps) in [20] were 25 and 30 fps, while in this study
25 fps was the “worst” tested value. Interestingly, the same
test condition (25 fps, 10 Mbps) was rated quite differently
in these two studies, which can likely be attributed to the
choice of tested stimuli and player tendency to compare con-
ditions relative to one another. This raises several important
questions regarding: use of rating scales and comparison
of results, specifications of different contexts (i.e., single vs
group play), and the implications of ranges of tested system
parameters (in this case frame rate). We note that recent
efforts have aimed at addressing the challenge of standard-
izing test methodologies for gaming QoE [16].

Referring again to the results of this study, we illustrate
the extent of the degradations introduced in Figure 9. Three



Figure 9: Impact of degradations on QoE

areas of degradations can be identified (as presented in [10]
regarding generic relationships between QoE and QoS): (1)
no distortion perceived, (2) user disturbed and (3) user gives
up. During this study and in the case of SS3, most of the
player scores are located in the “user disturbed” area. For
the case of HS, the tested degradations did not have a signif-
icant impact on perceived QoE, and thus player scores are
portrayed in the “no distortion area”. We note that Figure
9 is meant to only illustrate qualitative trends, and that fu-
ture studies are needed to assign concrete values to all points
along the axis.

4.1.2 Context parameters
We additionally inspected the impact on QoE of the play-

ers’ social context. Social context is represented by players’
group composition based on previous player’s gaming expe-
rience. Out of 13 groups that participated in our study, 2 of
them were composed of only experienced players, 4 groups
were composed of intermediate skilled players and 2 groups
included only novice players. The remaining 5 groups were
heterogeneous groups with regards to previous player’s ex-

Figure 10: The impact of group composition on QoE for SS3
(avg. values and 95% CI)

Figure 11: The impact of group composition on QoE for HS
(avg. values and 95% CI)

perience, and each of these mixed groups consisted of at
least one novice and one experienced player. Figure 10 dis-
plays average scores of overall QoE for SS3 based on group
composition. The distinction of QoE scores between ho-
mogeneous and mixed groups is minor across all experience
levels, although a slight decrease of perceived QoE can be
observed when playing in mixed groups for all levels. This
differs from findings in [22], where only experienced players
reported lower QoS scores in mixed groups, while for novice
and intermediate player playing in mixed groups improved
QoE, due to playing with experienced players which yielded
better game performance results for less experienced play-
ers. However, group composition has a different impact on
QoE for HS (Figure 11). While novice players report lower
QoE scores in mixed groups, perceived QoE of intermediate
and experienced players is slightly improved while playing
in the same group composition. This can be attributed to
the nature of the tested games. Whereas SS3 was played
cooperatively in our study, HS is a game where two play-
ers play against each other and only one of the players wins.
This sometimes results with imbalanced game sessions where
novice and experienced players are paired against each other,
and in these types of game situations more experienced play-
ers generally win with ease, making gaming sessions more
enjoyable for winners, as also reported in [6]. However, these
results are only indicative and the number of test subjects
is rather low for each category leading to very broad and
overlapping confidence intervals. Further testing of this pa-
rameter is needed for it to be quantified and incorporated
into future QoE models.

4.1.3 System parameters
The impact of frame rate on subjective ratings of overall

QoE under fixed bitrate for both games is shown in Figure
12. The graph shows more clearly what was stated previ-
ously with regards to the impact of video encoding parame-
ters on perceived QoE for SS3: players notice degradations
of QoE due to reduced frame rate for high bitrate levels as
a result of gameplay fluidity degradations. However, for low
bitrate levels (especially 3 Mbps), a decrease of frame rate
leads to a significant increase of graphics quality, which im-
pacts players more than degradations of gameplay fluidity.
On the contrary, for HS, players perceive QoE impairments



(a) Serious Sam 3 (b) Hearthstone

Figure 12: Impact of video parameters on overall MOS scores for SS3 and HS

(a) Serious Sam 3 (b) Hearthstone

Figure 13: Illustrated QoE models for Serious Sam 3 and Hearthstone

(a) Novice SS3 players (b) Intermediate skilled SS3 players (c) Experienced SS3 players

(d) Novice HS players (e) Intermediate skilled HS players (f) Experienced HS players

Figure 14: Graphical representation of QoE models for Serious Sam 3 and Hearthstone depending on player skill



Table 2: The QoE models for tested games

Serious Sam 3 Hearthstone

All Novice Intermediate Experienced All Novice Intermediate Experienced
framerate, αg,1 -0.028 0.199 0.466 0.541 0.034 0.072 0.107 -0.025
bitrate (Mbps), αg,2 0.404 -0.022 -0.028 -0.046 0.060 -0.003 -0.010 0.002
I(framerate2), αg,3 6.391E-04 -0.096 -0.009 0.019 0.060 0.014 0.039 0.049
I(bitrate2), αg,4 -0.031 0.001 7.701E-05 -0.001 -0.004 -2.168E-04 -0.001 -0.001
framerate:bitrate, αg,5 0.003 0.005 0.001 0.005 0.001 1.572E-04 0.002 0.001
Constant, αg,6 2.611 4.902 1.897 1.116 3,473 4.065 3.155 3.296

R2 0.986 0.915 0.969 0.977 0.782 0.496 0.773 0.763

(induced by manipulations of video encoding parameters) to
a far less extent, which leads to the conclusion that differ-
ent encoding configuration strategies can be employed for
different types of games.

4.2 QoE estimation models
In this section we report on obtained QoE estimation mod-

els derived from empirical data. We note that, as stated by
Hong et al. [11], such models as those proposed here are
not meant to provide overall accurate QoE estimations (as
has been the target of more complex models with a larger
number of predictor variables, including various context fac-
tors, latency, etc.), but rather to provide input to the cloud
service provider in terms of codec (re)configuration in light
of available bandwidth.

To model QoE as a function of video encoding parame-
ters, we tried several different ways to fit the data by using
different types of linear and non linear models. It should be
noted that we consider our data as interval data and not or-
dinal (i.e., we consider that the intervals between points on
the rating scales are equal). Based on our collected data and
by analysing accuracy of fit for these models, we model the
MOS scores as a quadratic function of manipulated video
encoding parameters (as also proposed in [11]):

MOS(g, f, b) = αg,1f+αg,2b+αg,3f
2+αg,4b

2+αg,5fb+αg,6,
(4)

where αg,1 - αg,6 are game-specific model parameters, b is
video bitrate and f is video frame rate. The values of model
parameters for tested games are summarized in Table 2, to-
gether with related R-squared values (the coefficient of de-
termination indicating how well data fits a QoE model). For
QoE models where all players, regardless of experience, are
considered, it can be seen that the derived QoE model for

Figure 15: Accuracy of estimated QoE ratings vs subjective
QoE ratings for Serious Sam 3

SS3 has a better fit considering collected data (R2 = 0.986)
then the QoE model for HS (R2 = 0.782). These QoE mod-
els are visualized in Figure 13, whereby the QoE model for
SS3 is visually similar to the QoE model for Call of Duty
reported in [11].

In addition to modelling QoE as a function of bitrate and
frame rate, we have also taken into account players’ expe-
rience and modelled QoE separately for different player ex-
perience levels. We illustrate obtained models in Figure 14.
As previously stated, experienced players are expected to
be more aware of game impairments due to QoS degrada-
tions, and in previous studies have been shown to rate per-
ceived QoE with lower scores than novice players. In case
of SS3, novice players’ QoE scores are not consistent with
video quality deteriorations through test scenarios, e.g. for
fixed 10 Mbps bitrate their perceived QoE is higher at lower
frame rates, which conflicts with QoE scores from other skill
groups. Figures 15 and 16 show the accuracy of the acquired
prediction models (considering all player types) for QoE for
SS3 and HS. If we use the QoE model designed without con-
sidering player experience to estimate overall QoE for differ-
ent skilled players, we see that there are wide discrepancies
between estimated and reported values of QoE, resulting in
lower QoE estimation accuracy. We therefore propose to
consider player skill as one of the inputs for QoE modelling.
While in this work we propose different QoE models for dif-
ferent skill levels, future work will address the potential of
incorporating skill level into a more generalized QoE esti-
mation model.

4.3 Characterization of test content based on
objective video metrics

Finally, we report on measured objective video metrics.
We collected gameplay video traces at a video encoding

Figure 16: Accuracy of estimated QoE ratings vs subjective
QoE ratings for Hearthstone



Figure 17: Scores for TI and SI metrics for SS3 and HS

frame rate of 30 fps for all three tested bitrate levels, which
resulted in 156 video samples per game. Figures 17 and 18
show plots of scores for HS and SS3 for temporal and spatial
metrics. In Figure 17 we plot temporal (TI) and spatial (SI)
metrics against each other. It can be seen that both games
in this subfigure show clear clustering behaviour, although
it is somewhat more prominent for SS3 which is clustered
in the upper left portion of the graph (higher temporal dy-
namics and lower image details), while HS is concentrated
mostly in the lower right portion of the graph (higher image
details and lower temporal dynamics). It should be noted
that on the temporal axis, HS is much more “spread” in val-
ues meaning that in some videos, highly dynamic actions
occur due to some cards having advanced animations (e.g.,
Twisting Nether card). It is evident that SS3 stream is much
more dynamic as scores on temporal metrics are, in general,
double the HS scores. The same trends can be observed
when two metrics from the other metric set (PFIM and IBS)
are plotted against each other in Figure 18. For these met-
rics there is less spread for the temporal component for HS,
while slightly more for SS3. These results indicate that it
is possible to empirically quantify the differences between
video streams of separate games. This information coupled
with other information regarding the game can and provide
a basis for future automatic game classification which can
be used for selecting optimal adaptation strategies for cloud
gaming.

5. CONCLUSIONS
In this work we have presented a subjective study involv-

ing 52 players playing two games delivered via cloud gam-
ing. We inspected the relation between system parameters
(i.e., bitrate and frame rate) to perceived fluidity, graphics
quality and overall QoE. We also investigated the impact
of user parameters (i.e., user game experience) and context
parameters (i.e., social context) on the QoE scores of both
games. Based on obtained results and also inspired by previ-
ous work published in [11], we derived QoE models for these
two games and show that they are significantly different.
Hence, we conclude that the game type tested clearly needs
to be taken into account when evaluating the QoE of cloud
games. The results indicate that there is no linear relation-
ship between frame rate and QoE – in some cases it is bet-
ter to deliver lower frame rate and increase graphics quality.

Figure 18: Scores for PFIM and IB metrics for SS3 and HSS

Also, we confirmed that there is significant impact of play-
ers’ previous gaming experience and incorporated this fact
into our models, while we concluded that for social context
more research is needed in order to be able to numerically
quantify its impact. Future studies will look to address the
limitations of the study reported in this paper, including the
sample test population (which should in the future be ex-
tended to better represent a wider gamer population), and
test methodology (potential impact of ordering effects).

Further, our ongoing work is aimed at further deriving
QoE-driven video encoding adaptation strategies for differ-
ent available network conditions. We are also looking to
study whether or not different adaptation strategies can be
mapped to classes of games (delivered via the cloud gam-
ing paradigm) grouped according to objective spatial and
temporal video metrics, and potentially additional relevant
context data (e.g., end device capabilities, player skill). Pre-
liminary results show that measured video characteristics
of the two tested games indicate that examining objective
video characteristics can be a basis for game classification.
Such a classification could then be used for determining op-
timal adaptation strategies for classes of games, which could
in the future automate the process of deciding on the best
encoding adaptation strategy for a particular game, allevi-
ating the need to conduct subjective studies for additionally
considered (or newly emerging) games.

We would also like to extend the reported QoE models by
taking into consideration additional context, such as player
skill and social context, and incorporating system parame-
ters such as latency and packet loss, which could improve
model accuracy. Finally, we would like to test the impact
of different encoding adaptation strategies on client device
battery consumption, as additional potential motivation to
adapt codec configuration parameters.
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