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ABSTRACT 

Currently exploited adaptive video streaming algorithms mainly 

focus on maximizing video representation while they usually not 

assess the risk of video freezing and not care about the influence 

of video representation switching. We propose a new Adaptation 

& Buffer Management Algorithm, called ABMA+, which selects 

video representation based on the predicted probability of video 

freezing. The algorithm continuously estimates segment download 

time characteristics and use the pre-computed playout buffer map 

to select the maximum video representation which guarantee 

smooth content playout. Our algorithm, thanks to the buffer map, 

avoids heavy online computation so it could be widely deployed 

on different terminals. The performed simulation and trial 

experiments confirm the efficiency of our approach.  
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1. INTRODUCTION 
Adaptive video streaming has been widely accepted by 

content providers because it promises smooth content playout by 

adjusting video quality to present transfer conditions. An adaptive 

video player consecutively requests small portions of the HTTP-

compliant video (called chunks or segments), each one with the 

appropriate media rate (called the representation rate). The 

adaptation algorithm selects the representation rate of successive 

segments adapting them to the current load conditions on the 

network and server sides. The commonly used adaptation 

algorithms select the representation, whose rate is slightly lower 

than available bandwidth [1]-[3] or pick the representation 

accordingly to playout buffer occupancy [4]-[7]; as shown in 

Section 2. 

Unfortunately, currently exploited adaptation algorithms may 

degrade quality experienced by users because they primary focus 

on maximizing video representation, while they do not explicitly 

control the video freezing probability nor consider the negative 

impact of frequent representation switching. Both these factors 

were recently identified [8] as significant for user’s satisfaction. In 

[9],[10], the authors proposed a new class of adaptation 

algorithms that adapts video representation based on the estimated 

probability of video rebuffering. Note that the rebuffering event 

occurs when the playout buffer becomes drained out so the video 

playout is frozen until the download of next video segments is 

finished. This probability is calculated on-line based on a queuing 

model of the playout buffer using as an input the estimated 

segment download time characteristics. The proposed adaptation 

method is more effective than currently exploited adaptation 

algorithms but it suffers significant computational overhead. This 

negative feature limits deployment of the re-buffering method 

only to the high end terminals.  

In this paper, we propose new approach for Adaptation & 

Buffer Management Algorithm, called ABMA+. In principle, it 

follows the concept of adaptation algorithms based on predicted 

rebuffering probability. However our algorithm exploits a pre-

computed buffer map to avoid heavy on-line computations. The 

buffer map determines the size of the playout buffer, which 

ensures a given rebuffering probability. As a consequence, the 

ABMA+ method allows to get the benefits of the rebuffering 

based approach even on the low computing video clients. 

Moreover, as the buffer map is calculated completely off-line, it 

could be derived using different queueing models, e.g. more 

accurate than the currently proposed, or it could be even collected 

from comprehensive simulations. Our contribution covers: i) new 

adaptation algorithm exploiting pre-computed buffer map, ii) 

improved model of adaptive streaming system, which reflects 

impact of the adaptation control logic by using state dependent 

description of the segment arrival process, iii) the prototype 

implementation of ABMA+ method, iv) the framework for 

performance evaluation and comparison of different adaptive 

streaming systems, and v) the performance evaluation of the 

ABMA+ method in comparison to the rate- and the buffer-based 

approaches.  

The paper is organized as follows. In section II, we present 

analysis of the currently investigated classes of the adaptive video 

streaming  methods. The proposed ABMA+ adaptation method is 

presented in section III. The framework for evaluation of adaptive 

streaming methods as well as the results of the experiments 

focused on the performance of ABMA+ method are provided in 

section IV. Finally, Section V summarizes the paper and gives an 

outline of further works. 

2. SURVEY OF ADAPTIVE ALGORITHMS  
The currently investigated HTTP-compliant adaptive stream-

switching algorithms adjust video representation based on the 

download conditions observed by the video client. These 

conditions describe the combined available throughput of the 

streaming server and the network path. They may be assessed by 
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the following factors: the estimated download rate [1]-[3], the 

observed occupancy of the playout buffer [4]-[7] and the 

estimated distribution of video segments download times [9]-[11]. 

Despite being strictly correlated, these factors have significant 

impact on the behavior of adaptation algorithms. As a 

consequence, we can roughly classify stream-switching 

algorithms into three basic classes: rate-based, buffer-based, and 

time-based. Although some approaches may exploit a 

combination of above factors, usually one of them is dominant. 

In following sub-sections we outline the main principles behind 

identified classes and provide theirs representative examples. For 

the clarity of this paper, we assume that client sequentially 

requests the video segments, i.e. the next segment is requested 

only if the previous has been received.   

2.1 Rate-based adaptive algorithms 
The rate-based adaptive algorithms aim to pick the representation 

which rate best matches the available bandwidth on the path from 

the streaming server to the client. The bandwidth is most 

commonly assessed as TCP connection throughput measured by 

client. These algorithms select the representation rate of the 

requested video segments based on the estimated download rate of 

the previously downloaded segments. Generally, they select the 

video representation rate that is the highest from the set of 

available representations rates ℜ and not greater than the most 

recently estimated download rate 𝑑𝑟𝑎𝑡�̂�𝑘. Formally, we can 

define it as in (1): 

𝑅𝑘+1 = sup{𝑅
𝑖 ∈ ℜ:𝑅𝑖 ≤ 𝑑𝑟𝑎𝑡�̂�𝑘}      (1) 

where k denotes the number of segment most recently received, 

𝑅𝑘+1 denotes the representation rate of requested segment and 

sup {∙} denotes the supremum. The set of representation rates ℜ is 

known a’priori to client, i.e., it is received by client in manifest 

file. 

Different rate-based adaptive algorithms differ in estimation 

techniques, i.e., the selected 𝑑𝑟𝑎𝑡�̂�𝑘 estimator. The estimator may 

be based on the most recently measured segment rate (instant 

estimator) or on a vector of recently measured segment rates 

(smoothed/moving estimators) [1]-[3]. The instant estimator 

rapidly reacts to download rate changes. This may lead to 

unnecessary video quality oscillations as the bandwidth of the 

end-to-end path varies significantly in the short-term. The 

smoothed/moving estimators are more resistant to bandwidth 

variations but they suffer from late reaction in the case of 

significant deteriorations of available network bandwidth 

(depending on smoothing factor or on the number of 

accommodated rate probes). This late reaction should be 

compensated by bigger playout buffer. In this scope, authors of 

[1] proposed to adjust the smoothing factor on-the-fly following 

the measured deviations of download rate. 

The rate-based adaptive algorithms focused solely on estimated 

rate are sensitive to variability of the segment size (video 

segments naturally vary in size due to commonly used VBR 

coding). This variability may cause buffer depletion even when 

download rate is stable. Rate-based adaptive algorithms are 

implemented in popular applications [2]. 

2.2 Buffer-based adaptive algorithms 
The buffer-based adaptive algorithms analyze current buffer 

occupancy and the rate of buffer changes to select adequate video 

representation. They exploit a rate map that directly determines 

the representation based on the current buffer occupancy [4][5], or 

they introduce thresholds to keep the buffer occupancy in 

bounded region [7][12][13]. The second group often applies 

control loop feedback mechanisms, like proportional-integral-

derivative controller (PID), to guide the adaptation [7][12]. 

The baseline algorithm proposed in [5], simply called Buffer-

Based Algorithm (BBA), assumes that: (i) if buffer occupancy 𝐵𝑘 

is lower than threshold 𝑇𝑚𝑖𝑛, then the lowest representation is 

picked; (ii) if it is higher than 𝑇𝑚𝑎𝑥, then the highest 

representation is picked; and (iii) if it is between these thresholds, 

then the representation is picked accordingly to linear function 

𝑓(𝐵𝑘). Formally, we can define it as in (2). 

𝑅𝑘+1 = {

𝑖𝑛𝑓{𝑅𝑖 ∈ ℜ}          𝑖𝑓  𝐵𝑘 ≤ 𝑇
𝑚𝑖𝑛                 

⌊𝑓(𝐵𝑘)⌋                   𝑖𝑓  𝑇
𝑚𝑖𝑛 < 𝐵𝑘 ≤ 𝑇

𝑚𝑎𝑥 

𝑠𝑢𝑝{𝑅𝑖 ∈ ℜ}         𝑖𝑓  𝐵𝑘 > 𝑇
𝑚𝑎𝑥               

   (2) 

The 𝑖𝑛𝑓{∙} denotes the infimum, and the ⌊𝑟⌋ denotes the next 

lower video rate, i.e. ⌊𝑟⌋ = sup{𝑅𝑖 ∈ ℜ: 𝑅𝑖 ≤ 𝑟}. The authors also 

proposed improved versions of BBA algorithm that use dynamic 

𝑇𝑚𝑖𝑛 calculation and segment map instead of rate map (BBA-1), 

and additionally exploited throughput in startup phase (BBA-2).  

The BBA-1 and BBA-2 behave better than the basic BBA but 

they need to know a’prori video segment sizes. Notice that this 

information is commonly not incorporated in manifest files. 

The authors of [12] propose control loop feedback mechanism 

that uses buffered video time in order to guide the adaptation 

decisions, called Smooth Video Adaptation Algorithm (SVAA). 

The SVAA aims to pick the representation matching the estimated 

TCP throughput multiplied by buffer-based adjustment factor 𝐹𝑘, 

as shown in (3). The adjustment factor 𝐹𝑘 is itself a product of 3 

sub-factors: buffer size 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒

, buffer trend 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

, and 

video chunk size 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 adjustments. The 𝐹𝑘

𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒
 and 

𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

 are used to rectify the difference between the 

observed and the target (equilibrium) buffer occupancy and mimic 

the proportional and integral terms of PI controller, accordingly. 

The optional 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 sub-factor is used to compensate for the 

TCP’s slow start phase in case of non-persistent HTTP 

connections. 

{
𝑅𝑘+1
∗ =  sup{𝑅𝑖 ∈ ℜ: 𝑅𝑖 ≤ 𝐹𝑘 ∗ 𝑑𝑟𝑎𝑡�̂�𝑘}    

𝐹𝑘 = 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒

∗ 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

∗ 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒

     (3) 

The SVAA switches the representation down if the buffer 

occupancy drops below half of the target occupancy. The 

representation is switched up when the calculated rate 𝑅𝑘+1
∗  is 

higher than the current rate 𝑅𝑘 for m consecutive segments.  The 

parameter m is introduced to smooth the adaptation (in expense of 

responsiveness). 

Although SVAA exploits both estimated download rate and buffer 

occupancy characteristics, we classify it as buffer-based since it 

intends to keep buffer occupancy in bounded region around the 

equilibrium point (target buffer occupancy). 

2.3 Time-based adaptive algorithms 
The time-based algorithms aim to pick the representation for 

which download times of video segments best synchronize with 

the segment playout time Ω. The Segment Download Time (SDT) 

is defined as the time that a segment takes to download (i.e. time 

interval from the instant of sending the request to the instant of 

receiving the last byte of the corresponding segment). Notice that 

SDT depends on both the representation rate of the segment and 



 

 

the segment size. As a consequence, in order to estimate SDT for 

another representation, SDT is scaled by quotient of rates of the 

considered representations. 

The authors in [11] propose to perform adaptation on the basis of 

the ratio between Ω and SDT of given segment k (SDTk). They 

argue that this ratio should be kept between predefined thresholds. 

If the ratio is higher than upper threshold 𝑇𝑢𝑝 than the next higher 

representation is selected, and if the ratio is lower than 𝑇𝑑𝑜𝑤𝑛 

threshold then best possible lower representation is picked. Such 

behavior aims at achieving conservative step-wise switch-up and 

aggressive switch down. 

𝑅𝑘+1 =

{
 
 

 
 𝑖𝑛𝑓{𝑅𝑖 ∈ ℜ:𝑅𝑖 > 𝑅𝑘}              𝑖𝑓 

Ω

𝑆𝐷𝑇𝑘
> 𝑇𝑢𝑝     

sup{𝑅𝑖 ∈ ℜ:𝑅𝑖 <
Ω

𝑆𝐷𝑇𝑘
× 𝑅𝑘}  𝑖𝑓 

Ω

𝑆𝐷𝑇𝑘
< 𝑇𝑑𝑜𝑤𝑛

𝑅𝑘                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

  (4) 

Since the adaptation is based on instant estimator of segment 

download time (SDTk), the video quality unnecessarily oscillates 

(the available bandwidth and video segment sizes are naturally 

time-varying). Therefore, the authors of [9] propose a novel 

approach for stream-switching adaptation based on the estimated 

SDT distribution and introduced analytical model of playout 

buffer. The SDT distribution is assumed to follow the folded 

normal distribution as each SDT is comprised of a number of 

packet download times. The proposed Adaptation & Buffer 

Management Algorithm (ABMA) aims at assuring probability of 

video rebuffering to sustain under given acceptable threshold 

while optimizing the video representation quality. 

The analytical model of playout buffer is approximated based on 

the GI/D/1/K queuing system observed only in time instances 

when segments have finished their service (playout). This model 

is used to calculate rebuffering probabilities for available video 

representations. The ABMA selects the highest quality video 

representation which satisfies the assumed rebuffering probability 

threshold 𝜀, as defined by (5). 

Since the ABMA estimates SDT distribution based on a few of 

lastly measured probes (e.g. 50) it suffers from late reaction to 

changing network conditions. This estimation latency needs to be 

compensated by bigger playout buffer (similarly as in rate-based 

algorithms). Moreover, ABMA instantaneously adjust the buffer 

size to absorb the short-term download rate oscillations. As 

a consequence, the buffer size 𝐵𝑘, calculated after receiving kth 

segment, ranges between the minimal buffer size needed to 

compensate for estimation latency 𝐶𝑘  and the maximum allowed 

buffer size of 𝑀 segments (see [9] for details). Rk+1 and current 

buffer size computed by ABMA are formally defined in (5). 

{
𝑅𝑘+1 = 𝑠𝑢𝑝{𝑅

𝑖 ∈ ℜ:𝑃𝑘
𝑖(𝑀 − 𝐶𝑘) < 𝜀 }                      

𝐵𝑘 = 𝐶𝑘 + 𝑖𝑛𝑓{𝐵
𝑗 = 1,… ,𝑀 − 𝐶𝑘: 𝑃𝑘

𝑘+1(𝐵𝑗) < 𝜀}
   (5) 

where the 𝑃𝑘
𝑖(𝐵𝑗) denotes the rebuffering probability for 

representation i (with rate 𝑅𝑖) calculated for a given buffer size Bj. 

The key differences between ABMA and other adaptive 

algorithms are: (i) ABMA approximates segment arrival process 

using probability distribution values while other methods are 

based on a single value (e.g., rate estimator, value of current 

buffer occupancy, etc.), and (ii) ABMA uses an analytical model 

to estimate rebuffering probability while other methods aim at 

avoiding any rebuffering events by heuristics. On one hand, the 

SDT distribution introduced by ABMA allows better 

characterizing the real short-term-varying download conditions 

than single value but, on the other hand, it corresponds to 

significantly higher computation overhead. 

3. ABMA+ ADAPTATION ALGORITHM  
In this chapter we present proposed Adaptation & Buffer 

Management Algorithm (ABMA+). The main idea of ABMA+ is 

to predict the video playout rebuffering probabilities for the 

available representations and then select the maximum 

representation which satisfies the assumed probability threshold 𝜀. 

The algorithm assesses available video representations based on 

the pre-computed buffer map using as an input the segment 

download time characteristics measured during the content 

download. The buffer map defines the capacity of the playout 

buffer which is required under a given segment download 

conditions to satisfy the assumed rebuffering threshold 𝜀. Let us 

remark, that the buffer map approach is possible because the 

adaptive video streaming system state is expressed in the time 

domain, where the most important is the number of stored 

segments but not their actual size in bytes. As a consequence, the 

system state depends on the number of segments’ arrivals 

observed during segment’s service time. Therefore, the buffer 

map can be expressed in a standardised form, where the segment 

download time characteristics are normalised to the segment 

playout time, So, the ABMA+ algorithm may use just a single 

buffer map for different video representations.  

In the following sections, we present the queuing model proposed 

for calculation of the buffer map and then we introduce the 

ABMA+ adaptation logic.  

3.1 The model for calculating buffer map  

In order to calculate the buffer map required by the ABMA+ 

adaptation algorithm, we model the adaptive video streaming 

system as a queuing system with K places, a single server and a 

finite queue storing video segments. We extend the approximate 

model proposed in [9],[10], by introducing the state depended 

description of an arrival process which accurately models the 
behaviour of the adaptation control logic.  

In our model, the service process corresponds to the 

segments’ playouts. Once the playout of a segment is finished, the 

system immediately takes the next segment from the buffer to 

assure smooth video playout. When the buffer is drained out, then 

the video playout is frozen at least until the next video segment 

becomes available. Note that some video players defer playout 

longer until the buffer reaches a assumed threshold. Most of 

adaptive streaming systems assume constant segment playout time 

although video segments have different size in bytes (especially 

segments belonging to different representations). Therefore, we 

model the segment playout by the deterministic process with the 
constant service time equal to the playout time, denoted by Ω.  

The arrival to the system corresponds to the segment 

download process which is controlled by the adaptation logic. It 

requests new segments to fill up the playout buffer. If the buffer 

becomes full, the adaptation logic defers requesting new segments 

to avoid loses until the playout of the current segment is finished. 

The segment download time (SDT) depends on the segment size 

(in bytes), transport protocol behaviour and the available 

bandwidth in the network. Studies indicate that the TCP goodput 

[14],[15] as well as the video frame sizes [16],[17] may be 

described by a random variable of the log-normal distribution. As 

the segment download time is a quotient of the segment size and 

the network bandwidth, we argue that SDT could also be 

modelled by the log-normal distribution. The segment download 

process is controlled by the adaptation logic which may request 



 

 

the number of segments equal to the number of free places in the 

system. As a consequence, the arrival process depends on the 

system state. So, we describe it by a set of r.v. An(Ω), which 

defines the number of segment arrivals occurring during service 

time Ω, where n=0,…, K, denotes the system state. The 

distribution of r.v. An(Ω) is derived following the same analysis as 

proposed in [10], assuming that the segment inter-arrival times are 

described by the log-normal distribution. So, let us consider that 
the probability density function of the SDT has the form (6), 

𝐹′(𝑥) =
1

𝑥𝜎√2𝜋
𝑒−

(𝑙𝑜𝑔𝑥−𝜇)2

2 𝜎2 ,   𝑥 > 0, 𝜎 > 0.      (6) 

It is well-known that a closed-form expression for the Laplace 

transform of the log-normal distribution does not exist. However, 

we may use one of the available approximations of this transform. 

For instance, in [18] the following approximation is studied: 

𝑓(𝑠) ≈
𝑒−[𝑊

2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]/(2𝜎2)

√1+𝑊(𝑠𝑒𝜇𝜎2)
,        (7) 

where 𝑊(𝑥) is the Lambert function, i.e. the solution of the 

equation 𝑊(𝑥)𝑒𝑊(𝑥) = 𝑥. As the average value of the log-normal 

distribution is (8), 

𝑚 = 𝑒𝜇+
𝜎2

2 ,              (8) 

we therefore obtain the steady state expressions (independent of 

the considered time slot) for the number of segment arrivals 

observed during the service time Ω as (9) 

𝑑0(𝑠) ≈
𝑒−𝜇−

𝜎2

2

𝑠2
[
𝑒−[𝑊

2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]/(2𝜎2)

√1+𝑊(𝑠𝑒𝜇𝜎2)
+ 𝑒𝜇+

𝜎2

2 𝑠 − 1],

𝑑𝑛(𝑠) ≈
𝑒
−𝜇−

𝜎2

2

𝑠2
[1 −

𝑒
−
[𝑊2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]

2𝜎2

√1+𝑊(𝑠𝑒𝜇𝜎2)
]

2

× 

×
𝑒
−
(𝑛−1)[𝑊2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]

2𝜎2

(1+𝑊(𝑠𝑒𝜇𝜎2))
𝑛−1
2  

, 𝑛 ≥ 1.

The r.v. D(Ω) is defined for the system with the infinite 

buffer, while in our case we are interested in r.v. An(Ω) which is 

defined for the finite buffer. Therefore, let us consider that as long 

as the number of arrived segments is lower than the number of 

free spaces in the system, the segment arrival process is exactly 

the same as in the case of infinite system. The main difference 

occurs when the arriving segment takes the last free space in the 

buffer. In the finite system no more arrivals may occur due to the 

deferring action taken by the adaptation logic, so the distribution 

of r.v. An(Ω) is given by (10), 

Pr{𝐴𝑛(Ω) = 𝑎} =

     {
Pr{𝐷(Ω) = 𝑎} ,                            𝑎 = 0,… , 𝐾 − 𝑛 − 1

1 − ∑ Pr{Pr{𝐷(Ω) = 𝑖}}𝑎−1
𝑖=0 ,     𝑎 = 𝐾 − 𝑛.                   

  (10) 

In order to derive the buffer map, we observe an adaptive 

streaming system just after a segment has finished its service. This 

approach simplifies system description because the residual 

service time equals zero in selected time instants. So the system 

state can be describe by a single r.v. N, which express the number 

of segments left behind just served segment. Moreover, the 

selected observation instances allow assessing the rebuffering 

probability as it directly corresponds to the events when departing 

segment left empty system. In the steady state conditions, the 
system can be described by the state equations (11).  

{

𝑃𝑛 = 𝑃0 × Pr{𝐴1(𝛺) = 𝑛 } +            𝑛 = 0,…, 𝐾 − 2      

+∑ 𝑃𝑛+1−𝑎 ×𝑛
𝑎=0 Pr{𝐴𝑛+1−𝑎(Ω) = 𝑎},    

∑ 𝑃𝑖
𝐾−1

𝑖=0
= 1,                                                                             

  (11) 

where Pn denotes the steady state probability of nth state. Note 
the value P0 directly express the rebuffering probability.  

 

We aim to derive the buffer map which is valid for different 

video representations, so we normalise SDT parameters to the 

segment playout time Ω by introducing two auxiliary variables ov 

and cv defined as (12)  

ov =
Ω

E[SDT]
− 1,          𝑐𝑣 =

𝑆𝐷[𝑆𝐷𝑇]

𝐸[𝑆𝐷𝑇]
.    

The over-rate factor (ov) normalizes the expected SDT value to the 

segment duration time Ω, while the cv, as a coefficient of variation, 

normalizes the standard deviation of SDT to the expected value of 

SDT. Note that the adaptation logic must kept ov value greater than 

zero otherwise the video rebuffering/freezing is inevitable 
regardless of the buffer size.  

Then, we express parameters  and  of the SDT log-normal 

distribution by the ov and cv values as (13):  

𝜇 = 𝐿𝑜𝑔 [
Ω

(1+𝑜𝑣)√1+𝑐𝑣2
] ,      𝜎 = 𝐿𝑜𝑔[√1 + 𝑐𝑣2].    (13) 
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Figure 1. Exemplary buffer map for ABMA+. 



 

 

Finally, we calcuate the buffer map based on proposed model. 

Therefore, for each pair of <ov,cv> , ov (0.01; 1.0) and cv 

(0.01; 1.0), we derive the minimum playout buffer capacity 

assuring that the rebuffering probabiltiy is lower than the assumed 

threshold 𝜀. The rebuffering probabiltiy is expresed by the 

varaible P0, calculated by solving the equation (11). In our 

calculations, we assume the segment playout time Ω equal to 2s 

and the video rebuffering threshold 𝜀 equal to 10-4. Moreover, the 

limit the maximum buffer size to 16 segments to avoid long 

buffering. The exemplary buffer map calcuated by the proposed 

method is presented on Fig. 1, where Fig. 1a presents the 3D plot, 

while Fig. 1b presents 2D cuts for different cv values. The value 

zero on the buffer map, observed for low ov and high cv values, 

means that there is impossible to satisfy the video rebuffering 

threshold under a given segment arrival conditions. From the 

shape of the buffer map presented on Fig.1, we may observe that 

the required buffer capacity under low values of the over rate 

factor (ov) is very sensitive to the segment download time 

variation (cv). In the case of the moderate over rate conditions, i.e. 

ov above 0.3, even a small buffer can accommodate relatively 

large segment download time variation. These results say that 

adaptation algorithm should keep the system in slightly over rated 

conditions to avoid instabilities.  

3.2 Adaptation control logic  

The objective of ABMA+ is to determine the highest 

representation for the next segment k+1: 𝑅𝑘+1 ∈ ℜ and the 

required playout buffer size: Bk+1<M, which ensure the 

rebuffering probability P0(Bk+1) at the level lower than the 

assumed threshold . Formally, these conditions are expressed by 

(5). The value M, counted in segments, is the maximum allowed 

buffer capacity limited by the terminal memory constraints or the 

conditions of the service [19]. We assume that the buffer contains 

a dedicated reservoir of length 𝐶 segments which compensates the 

latency in SDT estimation. Moreover we assume that the size of 

the reservoir does not depend on the current downloading 

conditions, so 𝐶𝑘 = 𝐶. The estimation latency derives directly 

from the fact that we assess current downloading conditions based 

on the past observations. Note that the buffer reservoir needs to 

counterweight the adaptation delay required to accommodate 

sample of X new SDT probes. The reservoir is considered into the 

ABMA+ by reducing the effective maximal buffer by C segments, 

see Fig. 2 for details. 

 

 

Figure 2. Flowchart of ABMA+. 

The simplified flowchart of ABMA+ algorithm is presented in 

Fig. 2. The ABMA+ algorithm runs whenever a new segment has 

been downloaded and a new SDT value has been obtained: steps 

S0, S1 in Fig. 2. Having updated SDT sample in S2, ABMA+ 

calculates ov and cv values and derives corresponding value b 

from buffer map, step S3. The <ov,cv> pair is computed for the 

most recently determined representation following equation (12). 

If the obtained buffer size of length b+C (the buffer size needed to 

assure rebuffering probability under ) is bigger than maximum 

allowed buffer size M, ABMA+ consecutively performs 

downward adaptation until the above condition is met, steps S5a, 

S6a (downward adaptation loop). Otherwise, ABMA+ 

successively checks if the buffer size estimated for the closest 

higher representation satisfies the (1-𝛽) ×M upper bound, and 

performs upward adaptation if it is so; steps S5b, S6b, S7b 

(upward adaptation loop). The (1-𝛽) ×M  bound for upward 

adaptation is intended to create the anti-oscillation buffer margin 

of size 𝛽 ×M. This margin is designed to reduce the representation 

swiching in the case when downloading conditions are just on the 
edge between two neighboring representations.  

In order to estimate ov value for the ith representation, 

ABMA+ must calculate the first moment for this representation 

based on the SDT sample, as in (12). Please notice that sample, in 

general case, may consist of entries corresponding to different 

representation. As a consequence, if the current sample 

corresponds to representation j (𝑆𝐷𝑇𝑘
𝑖 , k=1,..,X), then the sample 

for representation i (𝑆𝐷𝑇𝑘
𝑖 , k=1,..,X) is estimated by multiplying 

SDT values by quotient of considered representations, i.e. 

𝑆𝐷𝑇𝑘
𝑖 = 𝑆𝐷𝑇𝑘

𝑗
× 𝑅𝑘

𝑖 /𝑅𝑘
𝑗

 (k=1,..,X). ABMA+ performs sample 

scaling every time the representation is adjusted (steps S5a, S7b) 

resulting in whole sample corresponding to just one 

representation. Since the instantaneous video bitrate, for each 

representation, is varying throughout duration of the video content 

(due to variable bit rate coding), then the aforementioned sample 

scaling introduces an error, which may be considered negligible 

for a number of probes (X) large enough. Please note that cv value 

is independent on representation as it is itself an quotient of 

sample mean and standard deviations, see (12).  

Finally, after determining the representation  𝑅𝑘+1 and 

corresponding buffer size Bk+1, that are suit best to current 

downloading conditions, ABMA+ quits; steps S8, S9, S10. 

4. PERFORMANCE EVALUATION  
In this chapter we focus on the performance evaluation of the 

proposed ABMA+ adaptation algorithm. We aim to systematically 

evaluate the effectiveness of ABMA+ and compare its 

performance with other widely used adaptation methods, such as 

(i) Rate-Based Algorithm (RBA) which selects representation 

based on equation (1) and (ii) Buffer Based Algorithm (BBA), 

which selects representation based on equation (2).  

In order to assure dependable comparison, we propose a new 

framework for performance evaluation of adaptive streaming 

systems (presented in section 4.1). It assumes that adaptation 

algorithms would be compared in the referenced test environment 

under the representative and repeatable traffic conditions. 

Moreover, we defined the set of reference performance metrics 

that express the effectiveness of adaptation algorithms from 

different criteria as: video freezing, adaptation efficiency, 

representation switching, etc. (see Section 4.2). Finally, in section 

4.3 and 4.4 we present results obtained by the proposed 

framework and measured in the Internet trials. 
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4.1 Framework for performance evaluation  
The proposed approach for analyzing performance of ABMA+ 

and other adaptive streaming algorithms follows the concept of 

the fluid flow system analysis. It assumes that the system is 

observed in specific time instants when its state can be strictly 

described by a set of variables. The evolution of the system state 

is defined by analytical equations that determine values of the 

system variables in consecutive time instants. These equations 

precisely model system features which have influence on the 

system variables. The main motivation behind using fluid flow 

approach is its ability to model different adaptation algorithms in 

an unified way. Moreover, we can easily compare effectiveness of 

different adaptation methods by calculating the values of 

performance metrics based on instantaneous values of system 

variables. 

In our approach, we observe the adaptive video streaming system 

just after each video segment has been downloaded. We choose 

these time instants because adaptation algorithms have just 

updated information about downloaded segment to select the 

representation for the next video segments. In these time instants, 

we express the system state by three variables which describe: 

time instant (tk) in seconds, buffer occupancy (Bk) in seconds and 

representation rate (Rk) in bps. 

The variable tk describes time instant, when downloading of kth 

segment has been finished. It is defined by equation (14). 

      𝑡𝑘 = 𝑡𝑘−1 + 𝑆𝐷𝑇𝑘 +max(𝐵𝑘−1 + Ω− 𝐵; 0) (14) 

where SDTk denotes download time of kth segment, function 

max(.) determines the duration of download deferring periods 

occurring when the playout buffer was full, B is the maximum 

buffer size (expressed in seconds), and Ω is the segment playout 

time. Ω is constant for a given video and it is independent from 

the representation rate. The segment download time SDTk depends 

on the segment size in bits and the download rate as expressed by 

equation (15). 

      𝑆𝐷𝑇𝑘 =
𝑆𝑒𝑔𝑆𝑖𝑧𝑒𝑘(𝐹𝑎𝑑𝑎𝑝𝑡 (.))

𝑑𝑟𝑎𝑡𝑒𝑘̂  (15) 

The segment size depends on the video representation selected by 

the adaptation algorithm following Fadapt(.) function. This 

function models the behavior of adaptation algorithm, therefore it 

uses algorithm-specific arguments, for example download rate 

estimator, actual buffer occupancy or segment download time 

characteristics. The 𝑑𝑟𝑎𝑡�̂�𝑘 denotes an average download rate 

experienced by kth segment.  

The second variable Bk describes the buffer occupancy observed 

at the moment just after the kth video segment has been 

downloaded. Bk expressed by equation (16) defines the total 

playout time of video frames stored in the playout buffer. 

𝐵𝑘 = max[𝐵𝑘−1 − 𝑆𝐷𝑇𝑘 −max(𝐵𝑘−1 + Ω − 𝐵; 0) ; 0] + Ω (16) 

where the first function max(.) is used for modelling the buffer 

occupancy after re-buffering events, while the second function 

max(.) is similar as in (14). Once the buffer becomes empty, the 

video remains frozen until the download of current segment will 

be finished. 

The last variable Rk describes the video representation selected for 

next downloaded segment, Rk+1. The video representation is 

selected by adaptation specific function (17). 

𝑅𝑘+1 = 𝐹𝑎𝑑𝑎𝑝𝑡(𝑑𝑟𝑎𝑡𝑒𝑘̂  , 𝐵𝑘  , 𝑆𝐷𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ,… ) (17) 

Depending on the applied adaptation algorithm, different 

information is used, e.g. estimated download rate, buffer 

occupancy or rebuffering probability.  

The equations presented above describe the evolution of the 

system state. These equations can be solved in a recursive way or 

numerically. For performance evaluation of ABMA+ and other 

adaptive algorithms, we design a tool which numerically evaluates 

equations in a segment by segment manner. This tool is easily 

extendable for the analysis of other algorithms due to the isolation 

of adaptation algorithm operation into a separate module 

(AdaptationManager). For this purpose, the analyzed adaptation 

algorithm should be implemented as an object that inherits 

functions of AdaptationManager class and provides required 

adaptation logic. These functions cover: (i) adddata() which 

provides adaptation algorithm information about current system 

state, downloaded segment size and rate, (ii) adaptation() which 

initiates adaptation process and (iii) getRepresentation() which 

returns representation selected by adaptation algorithm. More 

information about the tool and its source code is available at 

http://wp2.tele.pw.edu.pl/disedan/software/abma-plus. 

4.2 Performance metrics 
The performance metrics proposed in the literature generally try 

to highlight some characteristics of a given algorithm, often 

leaving out many other characteristics. Therefore, we try to give a 

complete picture of the potential metrics, expressed in an 

universal way, which (we believe) may be a help for future 

research on this field. Note that different authors present slightly 

different names and formulas for the metrics presented in this 

section. We selected the names and formulas that, in our opinion, 

are more general and are accepted by a larger number of research 

papers. Moreover, we formally defined some of the parameters, 

which were not defined (formally) in the literature. 

The competition of resources component is analyzed by metrics as 

(un)fairness, (in)efficiency and (in)stability for comparing 

n=1,..,N clients, each one downloading kn=1,..,Kn segments 

[3][20]. In the following formulas, it is considered that each 

segment k of client n has representation rate equal to Rkn and is 

downloaded with rate 𝑑𝑟𝑎𝑡�̂�𝑘𝑛. The unfairness is the unequal 

repartition of the total bottleneck bandwidth BWT, which is the 

sum of the bandwidth allocated to each client BWn, so that 

BWT=ƩnBWn. In case of real network conditions, the bottleneck 

bandwidth is variable in time and BWn is calculated as the mean 

value of the bandwidth observed by client n during the 

downloading of all the segments. The unfairness is calculated by 

the Unfair Bandwidth Repartition (UBR) parameter as indicated 

in (18). UBR is related with the Jain index [21]. Mueller, Lederer 

and Timmerer proposed to compare values of average bandwidth 

available to each user for an scenario of two clients and one 

intermediate proxy [22]. Note that the metric proposed by these 

authors is a reduction of formula (18). 

 𝑈𝐵𝑅 = √1 −
𝐵𝑊𝑇

2

𝑁×∑
∑ 𝑑𝑟𝑎𝑡𝑒𝑘𝑛̂𝐾𝑛
𝑘𝑛=1

𝐾𝑛
⁄𝑁

𝑛=1

      (18) 

The efficiency indicates the responsiveness of the adaptation 

algorithm (within the clients) in matching the available bandwidth 

choosing the adequate representation. It is calculated by the 

Representation Selection Efficiency (RSE), which is the relation 

between the representations selected during the download and the 

minimum of two parameters: bottleneck, BWn, and highest 

representation of client n, maxjRjn, [23], see (19).  



 

 

 𝑅𝑆𝐸 = ∑ (𝑁
𝑛=1

1

𝐾𝑛
×∑ 𝑅𝑘𝑛

𝐾𝑛
𝑘=1

min {max𝑗𝑅𝑗𝑛,𝐵𝑊𝑛 }
)       (19) 

At last, instability is calculated as the probability of representation 

switches during the streaming (per user). This parameter is called 

Representation Switch Ratio (RSR) [24][25], see (20). 

𝑅𝑆𝑅 =
1

𝑁
× ∑ (

1

𝐾𝑛−1
× ∑ {

1,if 𝑅𝑘𝑛≠𝑅𝑘𝑛−1
0,if 𝑅𝑘𝑛=𝑅𝑘𝑛−1

𝐾𝑛
𝑘𝑛=2

𝑁
𝑛=1 )    (20) 

The second component that delineates the problem of adaptive 

streaming is the adaptation component. The tests analyzing this 

component study the behavior of one unique adaptive client in 

standalone scenario with delimited resources and compare it with 

other clients running in the same scenario. The metrics considered 

in the tests are based on the quality of the user’s experience of 

Media events (QoE).  

The main difficulties of calculating the QoE of video at the 

streaming protocol level is that the protocol only has information 

about the service at a level between the network and the 

application (note that the streaming protocols are, in general, 

codec-agnostic). Many studies tried to map quality of service 

metrics at the adaptive client level (rebuffering rate, switching 

rate) and the metrics of quality of media event experience at the 

playout [26][27]. These parameters could be then used in no-

reference methods [28] to define the features of the adaptive client 

in given scenario.  

The main idea of no-reference methods is to define the quality 

based on objective parameters. This is the same idea under the 

3GPP TS 26.247 initiative [29], which proposes a set of 

parameters taken at the underlying level (TCP and adaptive 

streaming protocol) that could be used to optimize resource 

allocation and adaptation [24].  

The general model of quality of experience of the Media event 

can be modeled as in (21), so the QoE is the average quality 

minus its temporal variability [28][30][31]. The temporal 

variability of the quality is the sum of factors that introduce 

changes in the playout video rate: rebuffering time duration, 

rebuffering rate, representation switches, etc. All these factors 

influence negatively into the general quality experienced by the 

end user. For example, rebuffering produces playout glitches and 

may increase the annoyance of the users [32] and representation 

switches causes flickers in video playout [33]. 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑒𝑎𝑛_𝑄𝑢𝑎𝑙𝑖𝑡𝑦 − 𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦   (21) 

The list of objective QoE parameters measured at the client level 

is long if we take into account the vast number of publications on 

this issue. The most outstanding parameters having influence in 

the quality of experience are described below. 

RSE as specified in (19) (with N=1 client), indicates the efficiency 

of the algorithm. 

The smoothness of the playout is measured by the rebuffering 

events at the client buffer during the download [25][27]. 

Generally, rebuffering events are monitored by observing the state 

of the client buffer, B(t), when a new segment arrives to the client 

buffer or is retrieved from the client buffer. If, just after retrieving 

a segment from the client buffer, the buffer is empty (B(t)=0), 

then we consider a rebuffering event. The duration of the 

rebuffering event is calculated as the period of time between 

retrieval of last segment and arrival of a new segment to the client 

buffer. Let us remark that rebuffering event does not necessarily 

means that the playout suffers a “glitch”, but these parameters are 

highly correlated. Two parameters measure smoothness: 

Rebuffering Event Ratio (RER), and Rebuffering Event Average 

Duration (RED).  

RER ϵ [0,1] is calculated as the relation of the number of 

rebuffering events and the number of segments K of the single 

client analyzed, as indicated in (22). 

 𝑅𝐸𝑅 =
1

𝐾
× |𝐵(𝑡) = 0 ∧ 𝐵(𝑡−) ≠ 0|     (22) 

where |function| indicates the cardinality of function. 

RED is calculated as in (23): 

 𝑅𝐸𝐷 =
1

𝐾×𝑅𝐸𝑅
× ∑ (𝑡2 − 𝑡1) |𝑗 

𝐾×𝑅𝐸𝑅
𝑗=1 , where 

 𝐵(𝑡2) ≠ 0 ∧ 𝐵(𝑡2
−) = 0 ∧ 𝐵(𝑡1) = 0 ∧ 𝐵(𝑡1

−) ≠ 0 (23) 

The parameters describing the (in)stability of the process are the 

RSR, see (20) (with N=1 client) and the Representation Switch 

Amplitude (RSA) [34][27][35].  

RSA is the average increase/decrease gap value of representation 

rate during the switches |Rj-Rj-1| of the single client analyzed, as 

indicated in (24). 

 𝑅𝑆𝐴 =
1

𝐾×𝑅𝑆𝑅
× ∑ |𝑅𝑗 − 𝑅𝑗−1|

𝐾
𝑗=2       (24) 

At last, two more parameters indicate the responsiveness speed of 

the clients. On the one hand, the Time Adaptation Speed (TAS) is 

calculated as the number of segments necessary for increasing the 

requested Representation from the lowest representation up to the 

bottleneck bandwidth [11]. TAS indicates how fast the adaptation 

algorithm gets the current situation of the network: 

𝑇𝐴𝑆 = 𝑖 ∈ 𝐾|{𝑅𝑖 = ⌊𝐵𝑊𝑇⌋ ∧ 𝑅𝑗 ≠ ⌊𝐵𝑊𝑇⌋, ∀𝑗 < 𝑖}  (25) 

where 𝑅𝑖 = ⌊𝐵𝑊𝑇⌋ is the highest representation that is lower or 

equal to BWT. 

On the other hand, Initial Playout Delay (IPD) (also called Join 

time [31]), is the time from when the adaptive client calls for the 

first segment and the moment when media content is retrieved 

from the client buffer [24]. Let us remark that IPD does not 

consider the time of manifest file retrieval.  

4.3 The simulation experiments  
Adaptive streaming methods significantly differ in the inherent 

mechanisms used for representation adaptation. Our objective is 

to evaluate and understand the main features of the proposed 

ABMA+ method and compare its effectiveness to other adaptive 

algorithms, i.e. rate-based (RBA) and buffer-based (BBA). 

Therefore, we analyze the behavior of adaptation algorithms 

under controlled and repeatable conditions using the framework 

proposed in Section 4.1. In simulation experiments, we follow 

three steps presented below: 

1. Step 1: Initialize the system state. In this step, we initialize the 

system variables. In particular, we set t0=0, the initial buffer 

occupancy B0=0, and the representation of the first segment, R1, is 

set to the representation with the minimum rate, R1=min{R}. 

2. Step 2: Calculate the values of system variables. In this step, 

we calculate the values of the system variables for consecutively 

downloaded segments. It is repeated until the last video segment 

is downloaded. So, starting from segment k=1, we first calculate 

the SDT of segment k, SDTk, based on the values of segment_size 

and dratek corresponding to kth segment which are provided as an 

input data for our analysis, see formula (15). Next, we calculate 



 

 

the time instant when the kth segment is downloaded by applying 

equation (14). We use the buffer occupancy after downloading the 

previous segment k-1. At last, we calculate the buffer occupancy 

observed after downloading kth segment by applying equation (16) 

and the representation for the next segment based on equation 

(17). The last equation models behavior of adaptation algorithm 

and therefore it is specific for each class of algorithms.  

3. Step 3: Calculate the values of performance metrics. In this 

step, we calculate the values of performance metrics based on the 

values of system variables derived in the step 2. In our 

experiments, we calculated a subset of metrics that covers RSE, 

RER, RED, RSR and RSA.  

In our basic experiments performed by simulations or Internet 

trials, we consider a single video client which downloads “Big 

Buck Bunny” cartoon encoded in different representations ranging 

from 45kbps up to 15Mbps as defined in the manifest file. The 

segment playout duration was fixed to 2s (Ω=2s). In the video 

client, we set the playout buffer size to 32 segments, which allows 

for around 1 min of continuous video playout. This value is 

typically used in commercial clients. For analyzed adaptation 

algorithms, we use the default values of parameters that were 

recommended by their authors. In particular, for RBA, we used 

the moving average estimator with the last 50 probes. In case of 

BBA, we use 𝑇𝑚𝑖𝑛  threshold (reservoir) of 5 segments, the 

defined rate map by linear function between 5 and 30 segments. 

For ABMA+, we assume the rebuffering probability threshold 𝜀 

equal to 10-4, the SDT sample size X equals 50 probes (the same 

value as used for the rate estimator in RBA), the buffer reservoir 

C equal to 5 segments (the same value as used for BBA), and the 

anti-oscillation factor 𝛽 equal to 0.1. We evaluated performance 

of ABMA+, RBA and BBA algorithms using traces collected 

from downloading the video content by a client connected by 

WiFi network (the network was being shared with other users) 

from the server located in Klagenfurt (Austria). The maximum 

download rate was intentionally limited to 4 Mbps to create the 

bottleneck at the WiFi network. We took measurements of 

download rate every two seconds during more than 6 hours 

(HTTP direct download of a long content). Since the available 

measurements of video download rate in the Internet are scarce, 

we decided to make available our measurements for researchers. 

They may be found in http://wp2.tele.pw.edu.pl/disedan/ 

software/traces. These measurements were used in our simulation 

framework to obtain the SDTk, tk and Rk values.  

Fig. 3 shows the time plots of the actual buffer occupancy vs. 

buffer capacity (upper plot) as well as the rate of video 

representation selected by the analyzed adaptation algorithm vs. 

current download rate (lower plot) that were collected for 

ABMA+, RBA and BBA algorithms. In the case of the RBA 

algorithm (Fig. 3a), we observe the rebuffering events and 

significant variation of buffer occupancy (see situation about 850th 

second) which point out that the average rate estimator does not 

properly reflect the high variability of the download conditions. 

Moreover, we can observe the increasing trend in the buffer 

occupancy which suggests that the RBA algorithm selects lower 

video representation than it would be possible. In the case of the 

BBA algorithm (Fig. 3b), we observe frequent and significant 

representation switching that happens even in the relatively 

smooth download conditions (see situation after 1000th second). 

This effect comes from the buffer occupancy oscillations that 

must happen whenever download rate is not exactly the same as 

the representation rate. Finally, we observe on Fig. 3c that the 

ABMA+ algorithm avoids rebuffering events and minimizes the  
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Figure 3. Comparison of adaptation algorithms in simulation 

experiment, where (a) RBA, (b) BBA and (c) ABMA+. 

representation changes. This effect comes from the better 

estimation of SDT which provides much more knowledge about 

the segment arrival process than used by other algorithms. 

Moreover, the ABMA+ method adjusts buffer size to current 

download conditions in the range of the minimum value up to the 

physical buffer capacity in order to avoid unnecessary buffering 

delay. From the queuing theory viewpoint, the required buffer size 

strictly depends on ov and cv values as it is shown by the buffer 

map presented on Fig. 1. So, ABMA+ wants to reflect this feature. 

 

Table 1. Performance evaluation of adaptation algorithms.  

Metric 
Adaptation algorithm 

RBA BBA ABMA+ 

RSE [%] 82 98 75 

RSR [%] 5 44 3.91 

RSA [Mbps] 0.421 1.16 0.45 

RER [%] 0.9 0.0 0.0 

RED [s] 0.97 0.0 0.0 

 

Table 1 presents the values of the performance metrics collected 

in our test. We can observe that the RBA algorithm suffers from 

rebuffering events, while both BBA and ABMA+ allow to 



 

 

guarantee smooth content playout. On the other hand, the BBA 

algorithm suffers high representation switching (RSR) at 44%. So, 

it changes representation almost every two segments! Moreover, 

we can observe that ABMA+ is slightly conservative. This effect 

comes from the worst case assumptions exploited in proposed 

model, e.g. lack of correlation in the arrival process. The results 

for ABMA+ say that there is still a room for algorithm 

improvements. 

In the next experiment, we have analyzed the effectiveness of 

ABMA+ for three videos that differ in the fast-moving scenes. We 

use: 1) “Of Forest And Men” documentary film, 2) “Big Buck 

Bunny” cartoon (the same as the previous experiment), and 3) 

“The Swiss Account” sport video. Similar as in the previous 

experiment, all videos were encoded in different representations 

ranging from 45kbps up to 15 Mbps, and the segment playout 

duration was fixed to 2s (Ω=2s). The obtained results are 

presented in Table 2.  

Table 2. Performance of ABMA+ for different videos. 

Metric 

Type of video 

Of Forest and 

Man 

(documentary) 

Big Bunny 

(cartoon) 

The Swiss 

Account 

(sport) 

RSE [%] 77.54 77.36 75.69 

RSR [%] 4.00 3.67 2.93 

RSA 

[Mbps] 
0.378 0.38 0.48 

RER [%] 0.0 0.00 0.0 

RED [s] 0.0 0.00 0.0 

 

We can observe that adaptation efficiency becomes slightly lower, 

i.e. about 2%, for the sport video. This effect comes from the fast-

moving scenes that makes adaptation harder. On the other hand, 

we can observe that the representation switching rate is slightly 

lower but its amplitude is slightly higher. Anyway, the impact of 

different videos on the ABMA+ efficiency is rather week, so we 

can conclude that the efficiency of ABMA+ is almost not affected 

by the type of the played video.   

4.4 Trials over the Internet  
The objective of the trials is to evaluate the performance of 

ABMA+ approach and compare its effectiveness with other 

adaptation algorithms in network environment. Specifically, we 

performed measurements of the three algorithms over the Internet 

and checked whether the aforementioned properties of the 

algorithms are preserved in the real network. 

We implemented the ABMA+, RBA and BBA adaptation 

algorithms (same parameters as in the simulation test) on the top 

of VLC player with DASH plug-in [36]. The algorithms are 

provided as separate modules, that are called by the 

HTTPConnectionManager object of the DASH plug-in just after 

downloading each segment. The source code is available 

http://wp2.tele.pw.edu.pl/disedan/software/abma-plus. 

The experiments were performed assuming the network shown in 

Fig. 4 which consists of three clients sharing the same WiFi 

access network and two servers with media content available 

through the Internet. On terminal labeled as Client#1 we launched 

VLC player with implemented adaptive mechanisms. This player 

downloaded and played “Big Buck Bunny” cartoon with constant 

resolution (480x360). The segment duration equaled 2 seconds 

 

Figure 4. Network scenario for trials. 

and the representations covered bitrates from 100 to 4500 Kbps. 

The cartoon was streamed by Server#1 located in Klagenfurt 

(Austria) [37]. Two other terminals (Client#bkg) run, at different 

moments, a number of background streaming sessions from 

Server#bkg situated in Warsaw (Poland), to disrupt Clinet#1’s 

streaming process.  

Time plots obtained during three one-hour experiments are 

presented in Fig. 5. Although the background traffic scheme (how 

and when the contents are claimed by the clients) was the same in 

all experiments, the traffic conditions from one experiment to 

another may slightly differ due to uncontrolled interference in 

wireless access network as well as varying load of paths between 

access point and servers 
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Figure 5. Comparison of adaptation algorithms in the trials 

over Internet, where (a) RBA, (b) BBA and (c) ABMA+. 
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The presented plots and the values of performance metrics shown 

in Table 3, confirm the conclusions derived from the simulation 

experiment. In particular, the RBA leads to rebuffering events due 

to inadequate modelling of the segment arrival process. The BBA 

allows for the best efficiency (highest RSE value) but it suffers 

from significant frequency of representation switching (the value 

of RSR metric is four times higher than for other algorithms).  

 

Table 3. The values of performance metrics in Internet trials. 

Metric 
Adaptation algorithm 

RBA BBA ABMA+ 

RSE [%] 90 94 86 

RSR [%] 4 16 4 

RSA [Mbps] 0.490 0.487 0.509 

RER [%] 1.7 0.0 0.0 

RED [s] 2.19 0.0 0.0 

 

In contrary to results achieved by simulations (see Section 4.3), 

value of RSA metric for the BBA is on a similar level as for other 

adaptations. The reason can be found in the fact that a significant 

number of representation switches was carried out between 

representations of low bitrates (see Fig. 5b, period between 1100 

and 2100 s), which decisively decreased RSA metric. In turn, the 

ABMA+ avoids rebuffering events at the cost of slightly lower 

efficiency. Moreover, it allows to avoid frequent representation 

switching which is the main drawback of the BBA approach (and, 

in general, the buffer-based algorithms). 

5. SUMMARY & CONCLUSIONS 
The paper proposes new algorithm for HTTP adaptive streaming, 

called ABMA+, that adapts video representation based on the 

estimated probability of video rebuffering. The algorithm 

continuously estimates segment download time characteristics and 

exploits pre-computed playout buffer map to select the maximum 

video representation, which satisfy the assumed rebuffering 

threshold. Thanks to exploiting the pre-computed buffer map, the 

ABMA+ algorithm avoids heavy on-line calculations allowing to 

get benefits of rebuffering based approach even on thin video 

clients. The paper contribution covered: i) proposal for new 

adaptation algorithm exploiting pre-computed buffer map, called 

ABMA+, ii) improved model of the adaptive streaming system 

used for calculating buffer maps, which reflects impact of the 

adaptation control logic by using state dependent description of 

the arrival process, iii) prototype implementation of ABMA+ 

method as DASH plug-in to VLC, iv) a framework for 

performance evaluation of different adaptive video streaming 

algorithms and v) performance evaluation of ABMA+ method in 

comparison to the rate- and buffer-based approaches.  

The obtained numerical results confirmed that the ABMA+ 

method efficiently adjusts video representation to the variable 

network conditions allowing to minimize the risk of video 

freezing and preventing frequent representation switching. 

Moreover, the pre-computed buffer map eliminates heavy on-line 

computations making our approach feasible for widely 

deployment. Therefore, we believe that proposed ABMA+ 

method constitutes an interesting alternative for currently 

exploited rate- and buffer-based adaptation algorithms.  
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