

ABMA+ : lightweight and efficient algorithm
for HTTP adaptive streaming

A.Beben1, P.Wiśniewski1,2, J. Mongay Batalla1,2, P. Krawiec1,2

1
 Warsaw University of Technology

Nowowiejska 15/19, Warsaw, Poland

2
 National Institute of Telecommunications

Szachowa 1, Warsaw, Poland

{a.beben, p.wisniewski, jordim, p.krawiec}@tele.pw.edu.pl

ABSTRACT

Currently exploited adaptive video streaming algorithms mainly

focus on maximizing video representation while they usually not

assess the risk of video freezing and not care about the influence

of video representation switching. We propose a new Adaptation

& Buffer Management Algorithm, called ABMA+, which selects

video representation based on the predicted probability of video

freezing. The algorithm continuously estimates segment download

time characteristics and use the pre-computed playout buffer map

to select the maximum video representation which guarantee

smooth content playout. Our algorithm, thanks to the buffer map,

avoids heavy online computation so it could be widely deployed

on different terminals. The performed simulation and trial

experiments confirm the efficiency of our approach.

CCS Concepts

•Information systems ➝ Multimedia streaming

 Keywords

Adaptive video streaming; MPEG DASH; modelling;

performance evaluation.

1. INTRODUCTION
Adaptive video streaming has been widely accepted by

content providers because it promises smooth content playout by

adjusting video quality to present transfer conditions. An adaptive

video player consecutively requests small portions of the HTTP-

compliant video (called chunks or segments), each one with the

appropriate media rate (called the representation rate). The

adaptation algorithm selects the representation rate of successive

segments adapting them to the current load conditions on the

network and server sides. The commonly used adaptation

algorithms select the representation, whose rate is slightly lower

than available bandwidth [1]-[3] or pick the representation

accordingly to playout buffer occupancy [4]-[7]; as shown in

Section 2.

Unfortunately, currently exploited adaptation algorithms may

degrade quality experienced by users because they primary focus

on maximizing video representation, while they do not explicitly

control the video freezing probability nor consider the negative

impact of frequent representation switching. Both these factors

were recently identified [8] as significant for user’s satisfaction. In

[9],[10], the authors proposed a new class of adaptation

algorithms that adapts video representation based on the estimated

probability of video rebuffering. Note that the rebuffering event

occurs when the playout buffer becomes drained out so the video

playout is frozen until the download of next video segments is

finished. This probability is calculated on-line based on a queuing

model of the playout buffer using as an input the estimated

segment download time characteristics. The proposed adaptation

method is more effective than currently exploited adaptation

algorithms but it suffers significant computational overhead. This

negative feature limits deployment of the re-buffering method

only to the high end terminals.

In this paper, we propose new approach for Adaptation &

Buffer Management Algorithm, called ABMA+. In principle, it

follows the concept of adaptation algorithms based on predicted

rebuffering probability. However our algorithm exploits a pre-

computed buffer map to avoid heavy on-line computations. The

buffer map determines the size of the playout buffer, which

ensures a given rebuffering probability. As a consequence, the

ABMA+ method allows to get the benefits of the rebuffering

based approach even on the low computing video clients.

Moreover, as the buffer map is calculated completely off-line, it

could be derived using different queueing models, e.g. more

accurate than the currently proposed, or it could be even collected

from comprehensive simulations. Our contribution covers: i) new

adaptation algorithm exploiting pre-computed buffer map, ii)

improved model of adaptive streaming system, which reflects

impact of the adaptation control logic by using state dependent

description of the segment arrival process, iii) the prototype

implementation of ABMA+ method, iv) the framework for

performance evaluation and comparison of different adaptive

streaming systems, and v) the performance evaluation of the

ABMA+ method in comparison to the rate- and the buffer-based

approaches.

The paper is organized as follows. In section II, we present

analysis of the currently investigated classes of the adaptive video

streaming methods. The proposed ABMA+ adaptation method is

presented in section III. The framework for evaluation of adaptive

streaming methods as well as the results of the experiments

focused on the performance of ABMA+ method are provided in

section IV. Finally, Section V summarizes the paper and gives an

outline of further works.

2. SURVEY OF ADAPTIVE ALGORITHMS
The currently investigated HTTP-compliant adaptive stream-

switching algorithms adjust video representation based on the

download conditions observed by the video client. These

conditions describe the combined available throughput of the

streaming server and the network path. They may be assessed by

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

MMSys'16, May 10 - 13, 2016, Klagenfurt, Austria

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4297-1/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2910017.2910596

the following factors: the estimated download rate [1]-[3], the

observed occupancy of the playout buffer [4]-[7] and the

estimated distribution of video segments download times [9]-[11].

Despite being strictly correlated, these factors have significant

impact on the behavior of adaptation algorithms. As a

consequence, we can roughly classify stream-switching

algorithms into three basic classes: rate-based, buffer-based, and

time-based. Although some approaches may exploit a

combination of above factors, usually one of them is dominant.

In following sub-sections we outline the main principles behind

identified classes and provide theirs representative examples. For

the clarity of this paper, we assume that client sequentially

requests the video segments, i.e. the next segment is requested

only if the previous has been received.

2.1 Rate-based adaptive algorithms
The rate-based adaptive algorithms aim to pick the representation

which rate best matches the available bandwidth on the path from

the streaming server to the client. The bandwidth is most

commonly assessed as TCP connection throughput measured by

client. These algorithms select the representation rate of the

requested video segments based on the estimated download rate of

the previously downloaded segments. Generally, they select the

video representation rate that is the highest from the set of

available representations rates ℜ and not greater than the most

recently estimated download rate 𝑑𝑟𝑎𝑡�̂�𝑘. Formally, we can

define it as in (1):

𝑅𝑘+1 = sup{𝑅
𝑖 ∈ ℜ:𝑅𝑖 ≤ 𝑑𝑟𝑎𝑡�̂�𝑘} (1)

where k denotes the number of segment most recently received,

𝑅𝑘+1 denotes the representation rate of requested segment and

sup {∙} denotes the supremum. The set of representation rates ℜ is

known a’priori to client, i.e., it is received by client in manifest

file.

Different rate-based adaptive algorithms differ in estimation

techniques, i.e., the selected 𝑑𝑟𝑎𝑡�̂�𝑘 estimator. The estimator may

be based on the most recently measured segment rate (instant

estimator) or on a vector of recently measured segment rates

(smoothed/moving estimators) [1]-[3]. The instant estimator

rapidly reacts to download rate changes. This may lead to

unnecessary video quality oscillations as the bandwidth of the

end-to-end path varies significantly in the short-term. The

smoothed/moving estimators are more resistant to bandwidth

variations but they suffer from late reaction in the case of

significant deteriorations of available network bandwidth

(depending on smoothing factor or on the number of

accommodated rate probes). This late reaction should be

compensated by bigger playout buffer. In this scope, authors of

[1] proposed to adjust the smoothing factor on-the-fly following

the measured deviations of download rate.

The rate-based adaptive algorithms focused solely on estimated

rate are sensitive to variability of the segment size (video

segments naturally vary in size due to commonly used VBR

coding). This variability may cause buffer depletion even when

download rate is stable. Rate-based adaptive algorithms are

implemented in popular applications [2].

2.2 Buffer-based adaptive algorithms
The buffer-based adaptive algorithms analyze current buffer

occupancy and the rate of buffer changes to select adequate video

representation. They exploit a rate map that directly determines

the representation based on the current buffer occupancy [4][5], or

they introduce thresholds to keep the buffer occupancy in

bounded region [7][12][13]. The second group often applies

control loop feedback mechanisms, like proportional-integral-

derivative controller (PID), to guide the adaptation [7][12].

The baseline algorithm proposed in [5], simply called Buffer-

Based Algorithm (BBA), assumes that: (i) if buffer occupancy 𝐵𝑘

is lower than threshold 𝑇𝑚𝑖𝑛, then the lowest representation is

picked; (ii) if it is higher than 𝑇𝑚𝑎𝑥, then the highest

representation is picked; and (iii) if it is between these thresholds,

then the representation is picked accordingly to linear function

𝑓(𝐵𝑘). Formally, we can define it as in (2).

𝑅𝑘+1 = {

𝑖𝑛𝑓{𝑅𝑖 ∈ ℜ} 𝑖𝑓 𝐵𝑘 ≤ 𝑇
𝑚𝑖𝑛

⌊𝑓(𝐵𝑘)⌋ 𝑖𝑓 𝑇
𝑚𝑖𝑛 < 𝐵𝑘 ≤ 𝑇

𝑚𝑎𝑥

𝑠𝑢𝑝{𝑅𝑖 ∈ ℜ} 𝑖𝑓 𝐵𝑘 > 𝑇
𝑚𝑎𝑥

 (2)

The 𝑖𝑛𝑓{∙} denotes the infimum, and the ⌊𝑟⌋ denotes the next

lower video rate, i.e. ⌊𝑟⌋ = sup{𝑅𝑖 ∈ ℜ: 𝑅𝑖 ≤ 𝑟}. The authors also

proposed improved versions of BBA algorithm that use dynamic

𝑇𝑚𝑖𝑛 calculation and segment map instead of rate map (BBA-1),

and additionally exploited throughput in startup phase (BBA-2).

The BBA-1 and BBA-2 behave better than the basic BBA but

they need to know a’prori video segment sizes. Notice that this

information is commonly not incorporated in manifest files.

The authors of [12] propose control loop feedback mechanism

that uses buffered video time in order to guide the adaptation

decisions, called Smooth Video Adaptation Algorithm (SVAA).

The SVAA aims to pick the representation matching the estimated

TCP throughput multiplied by buffer-based adjustment factor 𝐹𝑘,

as shown in (3). The adjustment factor 𝐹𝑘 is itself a product of 3

sub-factors: buffer size 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒

, buffer trend 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

, and

video chunk size 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 adjustments. The 𝐹𝑘

𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒
 and

𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

 are used to rectify the difference between the

observed and the target (equilibrium) buffer occupancy and mimic

the proportional and integral terms of PI controller, accordingly.

The optional 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 sub-factor is used to compensate for the

TCP’s slow start phase in case of non-persistent HTTP

connections.

{
𝑅𝑘+1
∗ = sup{𝑅𝑖 ∈ ℜ: 𝑅𝑖 ≤ 𝐹𝑘 ∗ 𝑑𝑟𝑎𝑡�̂�𝑘}

𝐹𝑘 = 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑠𝑖𝑧𝑒

∗ 𝐹𝑘
𝑏𝑢𝑓𝑓 𝑡𝑟𝑒𝑛𝑑

∗ 𝐹𝑘
𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒

 (3)

The SVAA switches the representation down if the buffer

occupancy drops below half of the target occupancy. The

representation is switched up when the calculated rate 𝑅𝑘+1
∗ is

higher than the current rate 𝑅𝑘 for m consecutive segments. The

parameter m is introduced to smooth the adaptation (in expense of

responsiveness).

Although SVAA exploits both estimated download rate and buffer

occupancy characteristics, we classify it as buffer-based since it

intends to keep buffer occupancy in bounded region around the

equilibrium point (target buffer occupancy).

2.3 Time-based adaptive algorithms
The time-based algorithms aim to pick the representation for

which download times of video segments best synchronize with

the segment playout time Ω. The Segment Download Time (SDT)

is defined as the time that a segment takes to download (i.e. time

interval from the instant of sending the request to the instant of

receiving the last byte of the corresponding segment). Notice that

SDT depends on both the representation rate of the segment and

the segment size. As a consequence, in order to estimate SDT for

another representation, SDT is scaled by quotient of rates of the

considered representations.

The authors in [11] propose to perform adaptation on the basis of

the ratio between Ω and SDT of given segment k (SDTk). They

argue that this ratio should be kept between predefined thresholds.

If the ratio is higher than upper threshold 𝑇𝑢𝑝 than the next higher

representation is selected, and if the ratio is lower than 𝑇𝑑𝑜𝑤𝑛

threshold then best possible lower representation is picked. Such

behavior aims at achieving conservative step-wise switch-up and

aggressive switch down.

𝑅𝑘+1 =

{

 𝑖𝑛𝑓{𝑅𝑖 ∈ ℜ:𝑅𝑖 > 𝑅𝑘} 𝑖𝑓

Ω

𝑆𝐷𝑇𝑘
> 𝑇𝑢𝑝

sup{𝑅𝑖 ∈ ℜ:𝑅𝑖 <
Ω

𝑆𝐷𝑇𝑘
× 𝑅𝑘} 𝑖𝑓

Ω

𝑆𝐷𝑇𝑘
< 𝑇𝑑𝑜𝑤𝑛

𝑅𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

Since the adaptation is based on instant estimator of segment

download time (SDTk), the video quality unnecessarily oscillates

(the available bandwidth and video segment sizes are naturally

time-varying). Therefore, the authors of [9] propose a novel

approach for stream-switching adaptation based on the estimated

SDT distribution and introduced analytical model of playout

buffer. The SDT distribution is assumed to follow the folded

normal distribution as each SDT is comprised of a number of

packet download times. The proposed Adaptation & Buffer

Management Algorithm (ABMA) aims at assuring probability of

video rebuffering to sustain under given acceptable threshold

while optimizing the video representation quality.

The analytical model of playout buffer is approximated based on

the GI/D/1/K queuing system observed only in time instances

when segments have finished their service (playout). This model

is used to calculate rebuffering probabilities for available video

representations. The ABMA selects the highest quality video

representation which satisfies the assumed rebuffering probability

threshold 𝜀, as defined by (5).

Since the ABMA estimates SDT distribution based on a few of

lastly measured probes (e.g. 50) it suffers from late reaction to

changing network conditions. This estimation latency needs to be

compensated by bigger playout buffer (similarly as in rate-based

algorithms). Moreover, ABMA instantaneously adjust the buffer

size to absorb the short-term download rate oscillations. As

a consequence, the buffer size 𝐵𝑘, calculated after receiving kth

segment, ranges between the minimal buffer size needed to

compensate for estimation latency 𝐶𝑘 and the maximum allowed

buffer size of 𝑀 segments (see [9] for details). Rk+1 and current

buffer size computed by ABMA are formally defined in (5).

{
𝑅𝑘+1 = 𝑠𝑢𝑝{𝑅

𝑖 ∈ ℜ:𝑃𝑘
𝑖(𝑀 − 𝐶𝑘) < 𝜀 }

𝐵𝑘 = 𝐶𝑘 + 𝑖𝑛𝑓{𝐵
𝑗 = 1,… ,𝑀 − 𝐶𝑘: 𝑃𝑘

𝑘+1(𝐵𝑗) < 𝜀}
 (5)

where the 𝑃𝑘
𝑖(𝐵𝑗) denotes the rebuffering probability for

representation i (with rate 𝑅𝑖) calculated for a given buffer size Bj.

The key differences between ABMA and other adaptive

algorithms are: (i) ABMA approximates segment arrival process

using probability distribution values while other methods are

based on a single value (e.g., rate estimator, value of current

buffer occupancy, etc.), and (ii) ABMA uses an analytical model

to estimate rebuffering probability while other methods aim at

avoiding any rebuffering events by heuristics. On one hand, the

SDT distribution introduced by ABMA allows better

characterizing the real short-term-varying download conditions

than single value but, on the other hand, it corresponds to

significantly higher computation overhead.

3. ABMA+ ADAPTATION ALGORITHM
In this chapter we present proposed Adaptation & Buffer

Management Algorithm (ABMA+). The main idea of ABMA+ is

to predict the video playout rebuffering probabilities for the

available representations and then select the maximum

representation which satisfies the assumed probability threshold 𝜀.

The algorithm assesses available video representations based on

the pre-computed buffer map using as an input the segment

download time characteristics measured during the content

download. The buffer map defines the capacity of the playout

buffer which is required under a given segment download

conditions to satisfy the assumed rebuffering threshold 𝜀. Let us

remark, that the buffer map approach is possible because the

adaptive video streaming system state is expressed in the time

domain, where the most important is the number of stored

segments but not their actual size in bytes. As a consequence, the

system state depends on the number of segments’ arrivals

observed during segment’s service time. Therefore, the buffer

map can be expressed in a standardised form, where the segment

download time characteristics are normalised to the segment

playout time, So, the ABMA+ algorithm may use just a single

buffer map for different video representations.

In the following sections, we present the queuing model proposed

for calculation of the buffer map and then we introduce the

ABMA+ adaptation logic.

3.1 The model for calculating buffer map

In order to calculate the buffer map required by the ABMA+

adaptation algorithm, we model the adaptive video streaming

system as a queuing system with K places, a single server and a

finite queue storing video segments. We extend the approximate

model proposed in [9],[10], by introducing the state depended

description of an arrival process which accurately models the
behaviour of the adaptation control logic.

In our model, the service process corresponds to the

segments’ playouts. Once the playout of a segment is finished, the

system immediately takes the next segment from the buffer to

assure smooth video playout. When the buffer is drained out, then

the video playout is frozen at least until the next video segment

becomes available. Note that some video players defer playout

longer until the buffer reaches a assumed threshold. Most of

adaptive streaming systems assume constant segment playout time

although video segments have different size in bytes (especially

segments belonging to different representations). Therefore, we

model the segment playout by the deterministic process with the
constant service time equal to the playout time, denoted by Ω.

The arrival to the system corresponds to the segment

download process which is controlled by the adaptation logic. It

requests new segments to fill up the playout buffer. If the buffer

becomes full, the adaptation logic defers requesting new segments

to avoid loses until the playout of the current segment is finished.

The segment download time (SDT) depends on the segment size

(in bytes), transport protocol behaviour and the available

bandwidth in the network. Studies indicate that the TCP goodput

[14],[15] as well as the video frame sizes [16],[17] may be

described by a random variable of the log-normal distribution. As

the segment download time is a quotient of the segment size and

the network bandwidth, we argue that SDT could also be

modelled by the log-normal distribution. The segment download

process is controlled by the adaptation logic which may request

the number of segments equal to the number of free places in the

system. As a consequence, the arrival process depends on the

system state. So, we describe it by a set of r.v. An(Ω), which

defines the number of segment arrivals occurring during service

time Ω, where n=0,…, K, denotes the system state. The

distribution of r.v. An(Ω) is derived following the same analysis as

proposed in [10], assuming that the segment inter-arrival times are

described by the log-normal distribution. So, let us consider that
the probability density function of the SDT has the form (6),

𝐹′(𝑥) =
1

𝑥𝜎√2𝜋
𝑒−

(𝑙𝑜𝑔𝑥−𝜇)2

2 𝜎2 , 𝑥 > 0, 𝜎 > 0. (6)

It is well-known that a closed-form expression for the Laplace

transform of the log-normal distribution does not exist. However,

we may use one of the available approximations of this transform.

For instance, in [18] the following approximation is studied:

𝑓(𝑠) ≈
𝑒−[𝑊

2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]/(2𝜎2)

√1+𝑊(𝑠𝑒𝜇𝜎2)
, (7)

where 𝑊(𝑥) is the Lambert function, i.e. the solution of the

equation 𝑊(𝑥)𝑒𝑊(𝑥) = 𝑥. As the average value of the log-normal

distribution is (8),

𝑚 = 𝑒𝜇+
𝜎2

2 , (8)

we therefore obtain the steady state expressions (independent of

the considered time slot) for the number of segment arrivals

observed during the service time Ω as (9)

𝑑0(𝑠) ≈
𝑒−𝜇−

𝜎2

2

𝑠2
[
𝑒−[𝑊

2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]/(2𝜎2)

√1+𝑊(𝑠𝑒𝜇𝜎2)
+ 𝑒𝜇+

𝜎2

2 𝑠 − 1],

𝑑𝑛(𝑠) ≈
𝑒
−𝜇−

𝜎2

2

𝑠2
[1 −

𝑒
−
[𝑊2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]

2𝜎2

√1+𝑊(𝑠𝑒𝜇𝜎2)
]

2

×

×
𝑒
−
(𝑛−1)[𝑊2(𝑠𝑒𝜇𝜎2)+2𝑊(𝑠𝑒𝜇𝜎2)]

2𝜎2

(1+𝑊(𝑠𝑒𝜇𝜎2))
𝑛−1
2

, 𝑛 ≥ 1.

The r.v. D(Ω) is defined for the system with the infinite

buffer, while in our case we are interested in r.v. An(Ω) which is

defined for the finite buffer. Therefore, let us consider that as long

as the number of arrived segments is lower than the number of

free spaces in the system, the segment arrival process is exactly

the same as in the case of infinite system. The main difference

occurs when the arriving segment takes the last free space in the

buffer. In the finite system no more arrivals may occur due to the

deferring action taken by the adaptation logic, so the distribution

of r.v. An(Ω) is given by (10),

Pr{𝐴𝑛(Ω) = 𝑎} =

 {
Pr{𝐷(Ω) = 𝑎} , 𝑎 = 0,… , 𝐾 − 𝑛 − 1

1 − ∑ Pr{Pr{𝐷(Ω) = 𝑖}}𝑎−1
𝑖=0 , 𝑎 = 𝐾 − 𝑛.

 (10)

In order to derive the buffer map, we observe an adaptive

streaming system just after a segment has finished its service. This

approach simplifies system description because the residual

service time equals zero in selected time instants. So the system

state can be describe by a single r.v. N, which express the number

of segments left behind just served segment. Moreover, the

selected observation instances allow assessing the rebuffering

probability as it directly corresponds to the events when departing

segment left empty system. In the steady state conditions, the
system can be described by the state equations (11).

{

𝑃𝑛 = 𝑃0 × Pr{𝐴1(𝛺) = 𝑛 } + 𝑛 = 0,…, 𝐾 − 2

+∑ 𝑃𝑛+1−𝑎 ×𝑛
𝑎=0 Pr{𝐴𝑛+1−𝑎(Ω) = 𝑎},

∑ 𝑃𝑖
𝐾−1

𝑖=0
= 1,

 (11)

where Pn denotes the steady state probability of nth state. Note
the value P0 directly express the rebuffering probability.

We aim to derive the buffer map which is valid for different

video representations, so we normalise SDT parameters to the

segment playout time Ω by introducing two auxiliary variables ov

and cv defined as (12)

ov =
Ω

E[SDT]
− 1, 𝑐𝑣 =

𝑆𝐷[𝑆𝐷𝑇]

𝐸[𝑆𝐷𝑇]
.

The over-rate factor (ov) normalizes the expected SDT value to the

segment duration time Ω, while the cv, as a coefficient of variation,

normalizes the standard deviation of SDT to the expected value of

SDT. Note that the adaptation logic must kept ov value greater than

zero otherwise the video rebuffering/freezing is inevitable
regardless of the buffer size.

Then, we express parameters and of the SDT log-normal

distribution by the ov and cv values as (13):

𝜇 = 𝐿𝑜𝑔 [
Ω

(1+𝑜𝑣)√1+𝑐𝑣2
] , 𝜎 = 𝐿𝑜𝑔[√1 + 𝑐𝑣2]. (13)

a

)
3

D
 p

lo
t

b
)

2
D

 c
u

ts
 f

o
r

d
if

fe
re

n
t

cv
 v

a
lu

es

Figure 1. Exemplary buffer map for ABMA+.

Finally, we calcuate the buffer map based on proposed model.

Therefore, for each pair of <ov,cv> , ov (0.01; 1.0) and cv

(0.01; 1.0), we derive the minimum playout buffer capacity

assuring that the rebuffering probabiltiy is lower than the assumed

threshold 𝜀. The rebuffering probabiltiy is expresed by the

varaible P0, calculated by solving the equation (11). In our

calculations, we assume the segment playout time Ω equal to 2s

and the video rebuffering threshold 𝜀 equal to 10-4. Moreover, the

limit the maximum buffer size to 16 segments to avoid long

buffering. The exemplary buffer map calcuated by the proposed

method is presented on Fig. 1, where Fig. 1a presents the 3D plot,

while Fig. 1b presents 2D cuts for different cv values. The value

zero on the buffer map, observed for low ov and high cv values,

means that there is impossible to satisfy the video rebuffering

threshold under a given segment arrival conditions. From the

shape of the buffer map presented on Fig.1, we may observe that

the required buffer capacity under low values of the over rate

factor (ov) is very sensitive to the segment download time

variation (cv). In the case of the moderate over rate conditions, i.e.

ov above 0.3, even a small buffer can accommodate relatively

large segment download time variation. These results say that

adaptation algorithm should keep the system in slightly over rated

conditions to avoid instabilities.

3.2 Adaptation control logic

The objective of ABMA+ is to determine the highest

representation for the next segment k+1: 𝑅𝑘+1 ∈ ℜ and the

required playout buffer size: Bk+1<M, which ensure the

rebuffering probability P0(Bk+1) at the level lower than the

assumed threshold . Formally, these conditions are expressed by

(5). The value M, counted in segments, is the maximum allowed

buffer capacity limited by the terminal memory constraints or the

conditions of the service [19]. We assume that the buffer contains

a dedicated reservoir of length 𝐶 segments which compensates the

latency in SDT estimation. Moreover we assume that the size of

the reservoir does not depend on the current downloading

conditions, so 𝐶𝑘 = 𝐶. The estimation latency derives directly

from the fact that we assess current downloading conditions based

on the past observations. Note that the buffer reservoir needs to

counterweight the adaptation delay required to accommodate

sample of X new SDT probes. The reservoir is considered into the

ABMA+ by reducing the effective maximal buffer by C segments,

see Fig. 2 for details.

Figure 2. Flowchart of ABMA+.

The simplified flowchart of ABMA+ algorithm is presented in

Fig. 2. The ABMA+ algorithm runs whenever a new segment has

been downloaded and a new SDT value has been obtained: steps

S0, S1 in Fig. 2. Having updated SDT sample in S2, ABMA+

calculates ov and cv values and derives corresponding value b

from buffer map, step S3. The <ov,cv> pair is computed for the

most recently determined representation following equation (12).

If the obtained buffer size of length b+C (the buffer size needed to

assure rebuffering probability under) is bigger than maximum

allowed buffer size M, ABMA+ consecutively performs

downward adaptation until the above condition is met, steps S5a,

S6a (downward adaptation loop). Otherwise, ABMA+

successively checks if the buffer size estimated for the closest

higher representation satisfies the (1-𝛽) ×M upper bound, and

performs upward adaptation if it is so; steps S5b, S6b, S7b

(upward adaptation loop). The (1-𝛽) ×M bound for upward

adaptation is intended to create the anti-oscillation buffer margin

of size 𝛽 ×M. This margin is designed to reduce the representation

swiching in the case when downloading conditions are just on the
edge between two neighboring representations.

In order to estimate ov value for the ith representation,

ABMA+ must calculate the first moment for this representation

based on the SDT sample, as in (12). Please notice that sample, in

general case, may consist of entries corresponding to different

representation. As a consequence, if the current sample

corresponds to representation j (𝑆𝐷𝑇𝑘
𝑖 , k=1,..,X), then the sample

for representation i (𝑆𝐷𝑇𝑘
𝑖 , k=1,..,X) is estimated by multiplying

SDT values by quotient of considered representations, i.e.

𝑆𝐷𝑇𝑘
𝑖 = 𝑆𝐷𝑇𝑘

𝑗
× 𝑅𝑘

𝑖 /𝑅𝑘
𝑗

 (k=1,..,X). ABMA+ performs sample

scaling every time the representation is adjusted (steps S5a, S7b)

resulting in whole sample corresponding to just one

representation. Since the instantaneous video bitrate, for each

representation, is varying throughout duration of the video content

(due to variable bit rate coding), then the aforementioned sample

scaling introduces an error, which may be considered negligible

for a number of probes (X) large enough. Please note that cv value

is independent on representation as it is itself an quotient of

sample mean and standard deviations, see (12).

Finally, after determining the representation 𝑅𝑘+1 and

corresponding buffer size Bk+1, that are suit best to current

downloading conditions, ABMA+ quits; steps S8, S9, S10.

4. PERFORMANCE EVALUATION
In this chapter we focus on the performance evaluation of the

proposed ABMA+ adaptation algorithm. We aim to systematically

evaluate the effectiveness of ABMA+ and compare its

performance with other widely used adaptation methods, such as

(i) Rate-Based Algorithm (RBA) which selects representation

based on equation (1) and (ii) Buffer Based Algorithm (BBA),

which selects representation based on equation (2).

In order to assure dependable comparison, we propose a new

framework for performance evaluation of adaptive streaming

systems (presented in section 4.1). It assumes that adaptation

algorithms would be compared in the referenced test environment

under the representative and repeatable traffic conditions.

Moreover, we defined the set of reference performance metrics

that express the effectiveness of adaptation algorithms from

different criteria as: video freezing, adaptation efficiency,

representation switching, etc. (see Section 4.2). Finally, in section

4.3 and 4.4 we present results obtained by the proposed

framework and measured in the Internet trials.

Upward
adaptation loop

YES YES

NO

NO

YES

NO

Downward
 adaptation loop

new SDT
probes

S1
update_sample

S2

ov calculate_ov(i+1)
S5b

map(ov,cv)+C (1-β)×M
S6b

b + C M
S4

scale_sample(i+1)
b = map(ov,cv)

i i + 1

S7b

i i – 1
scale_sample(i)

ov calculate_ov(i)
b = map(ov,cv)

S5a

b + C M
S6a

i last rep. index
ov calculate_ov(i)
cv calculate_cv(i)

b = map(ov,cv)

save i
S8

Return:
Bk+1 = C + b

Rk+1 = Ri

S9

S3

START
S0

END
S10

4.1 Framework for performance evaluation
The proposed approach for analyzing performance of ABMA+

and other adaptive streaming algorithms follows the concept of

the fluid flow system analysis. It assumes that the system is

observed in specific time instants when its state can be strictly

described by a set of variables. The evolution of the system state

is defined by analytical equations that determine values of the

system variables in consecutive time instants. These equations

precisely model system features which have influence on the

system variables. The main motivation behind using fluid flow

approach is its ability to model different adaptation algorithms in

an unified way. Moreover, we can easily compare effectiveness of

different adaptation methods by calculating the values of

performance metrics based on instantaneous values of system

variables.

In our approach, we observe the adaptive video streaming system

just after each video segment has been downloaded. We choose

these time instants because adaptation algorithms have just

updated information about downloaded segment to select the

representation for the next video segments. In these time instants,

we express the system state by three variables which describe:

time instant (tk) in seconds, buffer occupancy (Bk) in seconds and

representation rate (Rk) in bps.

The variable tk describes time instant, when downloading of kth

segment has been finished. It is defined by equation (14).

 𝑡𝑘 = 𝑡𝑘−1 + 𝑆𝐷𝑇𝑘 +max(𝐵𝑘−1 + Ω− 𝐵; 0) (14)

where SDTk denotes download time of kth segment, function

max(.) determines the duration of download deferring periods

occurring when the playout buffer was full, B is the maximum

buffer size (expressed in seconds), and Ω is the segment playout

time. Ω is constant for a given video and it is independent from

the representation rate. The segment download time SDTk depends

on the segment size in bits and the download rate as expressed by

equation (15).

 𝑆𝐷𝑇𝑘 =
𝑆𝑒𝑔𝑆𝑖𝑧𝑒𝑘(𝐹𝑎𝑑𝑎𝑝𝑡 (.))

𝑑𝑟𝑎𝑡𝑒𝑘̂ (15)

The segment size depends on the video representation selected by

the adaptation algorithm following Fadapt(.) function. This

function models the behavior of adaptation algorithm, therefore it

uses algorithm-specific arguments, for example download rate

estimator, actual buffer occupancy or segment download time

characteristics. The 𝑑𝑟𝑎𝑡�̂�𝑘 denotes an average download rate

experienced by kth segment.

The second variable Bk describes the buffer occupancy observed

at the moment just after the kth video segment has been

downloaded. Bk expressed by equation (16) defines the total

playout time of video frames stored in the playout buffer.

𝐵𝑘 = max[𝐵𝑘−1 − 𝑆𝐷𝑇𝑘 −max(𝐵𝑘−1 + Ω − 𝐵; 0) ; 0] + Ω (16)

where the first function max(.) is used for modelling the buffer

occupancy after re-buffering events, while the second function

max(.) is similar as in (14). Once the buffer becomes empty, the

video remains frozen until the download of current segment will

be finished.

The last variable Rk describes the video representation selected for

next downloaded segment, Rk+1. The video representation is

selected by adaptation specific function (17).

𝑅𝑘+1 = 𝐹𝑎𝑑𝑎𝑝𝑡(𝑑𝑟𝑎𝑡𝑒𝑘̂ , 𝐵𝑘 , 𝑆𝐷𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ,…) (17)

Depending on the applied adaptation algorithm, different

information is used, e.g. estimated download rate, buffer

occupancy or rebuffering probability.

The equations presented above describe the evolution of the

system state. These equations can be solved in a recursive way or

numerically. For performance evaluation of ABMA+ and other

adaptive algorithms, we design a tool which numerically evaluates

equations in a segment by segment manner. This tool is easily

extendable for the analysis of other algorithms due to the isolation

of adaptation algorithm operation into a separate module

(AdaptationManager). For this purpose, the analyzed adaptation

algorithm should be implemented as an object that inherits

functions of AdaptationManager class and provides required

adaptation logic. These functions cover: (i) adddata() which

provides adaptation algorithm information about current system

state, downloaded segment size and rate, (ii) adaptation() which

initiates adaptation process and (iii) getRepresentation() which

returns representation selected by adaptation algorithm. More

information about the tool and its source code is available at

http://wp2.tele.pw.edu.pl/disedan/software/abma-plus.

4.2 Performance metrics
The performance metrics proposed in the literature generally try

to highlight some characteristics of a given algorithm, often

leaving out many other characteristics. Therefore, we try to give a

complete picture of the potential metrics, expressed in an

universal way, which (we believe) may be a help for future

research on this field. Note that different authors present slightly

different names and formulas for the metrics presented in this

section. We selected the names and formulas that, in our opinion,

are more general and are accepted by a larger number of research

papers. Moreover, we formally defined some of the parameters,

which were not defined (formally) in the literature.

The competition of resources component is analyzed by metrics as

(un)fairness, (in)efficiency and (in)stability for comparing

n=1,..,N clients, each one downloading kn=1,..,Kn segments

[3][20]. In the following formulas, it is considered that each

segment k of client n has representation rate equal to Rkn and is

downloaded with rate 𝑑𝑟𝑎𝑡�̂�𝑘𝑛. The unfairness is the unequal

repartition of the total bottleneck bandwidth BWT, which is the

sum of the bandwidth allocated to each client BWn, so that

BWT=ƩnBWn. In case of real network conditions, the bottleneck

bandwidth is variable in time and BWn is calculated as the mean

value of the bandwidth observed by client n during the

downloading of all the segments. The unfairness is calculated by

the Unfair Bandwidth Repartition (UBR) parameter as indicated

in (18). UBR is related with the Jain index [21]. Mueller, Lederer

and Timmerer proposed to compare values of average bandwidth

available to each user for an scenario of two clients and one

intermediate proxy [22]. Note that the metric proposed by these

authors is a reduction of formula (18).

 𝑈𝐵𝑅 = √1 −
𝐵𝑊𝑇

2

𝑁×∑
∑ 𝑑𝑟𝑎𝑡𝑒𝑘𝑛̂𝐾𝑛
𝑘𝑛=1

𝐾𝑛
⁄𝑁

𝑛=1

 (18)

The efficiency indicates the responsiveness of the adaptation

algorithm (within the clients) in matching the available bandwidth

choosing the adequate representation. It is calculated by the

Representation Selection Efficiency (RSE), which is the relation

between the representations selected during the download and the

minimum of two parameters: bottleneck, BWn, and highest

representation of client n, maxjRjn, [23], see (19).

 𝑅𝑆𝐸 = ∑ (𝑁
𝑛=1

1

𝐾𝑛
×∑ 𝑅𝑘𝑛

𝐾𝑛
𝑘=1

min {max𝑗𝑅𝑗𝑛,𝐵𝑊𝑛 }
) (19)

At last, instability is calculated as the probability of representation

switches during the streaming (per user). This parameter is called

Representation Switch Ratio (RSR) [24][25], see (20).

𝑅𝑆𝑅 =
1

𝑁
× ∑ (

1

𝐾𝑛−1
× ∑ {

1,if 𝑅𝑘𝑛≠𝑅𝑘𝑛−1
0,if 𝑅𝑘𝑛=𝑅𝑘𝑛−1

𝐾𝑛
𝑘𝑛=2

𝑁
𝑛=1) (20)

The second component that delineates the problem of adaptive

streaming is the adaptation component. The tests analyzing this

component study the behavior of one unique adaptive client in

standalone scenario with delimited resources and compare it with

other clients running in the same scenario. The metrics considered

in the tests are based on the quality of the user’s experience of

Media events (QoE).

The main difficulties of calculating the QoE of video at the

streaming protocol level is that the protocol only has information

about the service at a level between the network and the

application (note that the streaming protocols are, in general,

codec-agnostic). Many studies tried to map quality of service

metrics at the adaptive client level (rebuffering rate, switching

rate) and the metrics of quality of media event experience at the

playout [26][27]. These parameters could be then used in no-

reference methods [28] to define the features of the adaptive client

in given scenario.

The main idea of no-reference methods is to define the quality

based on objective parameters. This is the same idea under the

3GPP TS 26.247 initiative [29], which proposes a set of

parameters taken at the underlying level (TCP and adaptive

streaming protocol) that could be used to optimize resource

allocation and adaptation [24].

The general model of quality of experience of the Media event

can be modeled as in (21), so the QoE is the average quality

minus its temporal variability [28][30][31]. The temporal

variability of the quality is the sum of factors that introduce

changes in the playout video rate: rebuffering time duration,

rebuffering rate, representation switches, etc. All these factors

influence negatively into the general quality experienced by the

end user. For example, rebuffering produces playout glitches and

may increase the annoyance of the users [32] and representation

switches causes flickers in video playout [33].

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑒𝑎𝑛_𝑄𝑢𝑎𝑙𝑖𝑡𝑦 − 𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (21)

The list of objective QoE parameters measured at the client level

is long if we take into account the vast number of publications on

this issue. The most outstanding parameters having influence in

the quality of experience are described below.

RSE as specified in (19) (with N=1 client), indicates the efficiency

of the algorithm.

The smoothness of the playout is measured by the rebuffering

events at the client buffer during the download [25][27].

Generally, rebuffering events are monitored by observing the state

of the client buffer, B(t), when a new segment arrives to the client

buffer or is retrieved from the client buffer. If, just after retrieving

a segment from the client buffer, the buffer is empty (B(t)=0),

then we consider a rebuffering event. The duration of the

rebuffering event is calculated as the period of time between

retrieval of last segment and arrival of a new segment to the client

buffer. Let us remark that rebuffering event does not necessarily

means that the playout suffers a “glitch”, but these parameters are

highly correlated. Two parameters measure smoothness:

Rebuffering Event Ratio (RER), and Rebuffering Event Average

Duration (RED).

RER ϵ [0,1] is calculated as the relation of the number of

rebuffering events and the number of segments K of the single

client analyzed, as indicated in (22).

 𝑅𝐸𝑅 =
1

𝐾
× |𝐵(𝑡) = 0 ∧ 𝐵(𝑡−) ≠ 0| (22)

where |function| indicates the cardinality of function.

RED is calculated as in (23):

 𝑅𝐸𝐷 =
1

𝐾×𝑅𝐸𝑅
× ∑ (𝑡2 − 𝑡1) |𝑗

𝐾×𝑅𝐸𝑅
𝑗=1 , where

 𝐵(𝑡2) ≠ 0 ∧ 𝐵(𝑡2
−) = 0 ∧ 𝐵(𝑡1) = 0 ∧ 𝐵(𝑡1

−) ≠ 0 (23)

The parameters describing the (in)stability of the process are the

RSR, see (20) (with N=1 client) and the Representation Switch

Amplitude (RSA) [34][27][35].

RSA is the average increase/decrease gap value of representation

rate during the switches |Rj-Rj-1| of the single client analyzed, as

indicated in (24).

 𝑅𝑆𝐴 =
1

𝐾×𝑅𝑆𝑅
× ∑ |𝑅𝑗 − 𝑅𝑗−1|

𝐾
𝑗=2 (24)

At last, two more parameters indicate the responsiveness speed of

the clients. On the one hand, the Time Adaptation Speed (TAS) is

calculated as the number of segments necessary for increasing the

requested Representation from the lowest representation up to the

bottleneck bandwidth [11]. TAS indicates how fast the adaptation

algorithm gets the current situation of the network:

𝑇𝐴𝑆 = 𝑖 ∈ 𝐾|{𝑅𝑖 = ⌊𝐵𝑊𝑇⌋ ∧ 𝑅𝑗 ≠ ⌊𝐵𝑊𝑇⌋, ∀𝑗 < 𝑖} (25)

where 𝑅𝑖 = ⌊𝐵𝑊𝑇⌋ is the highest representation that is lower or

equal to BWT.

On the other hand, Initial Playout Delay (IPD) (also called Join

time [31]), is the time from when the adaptive client calls for the

first segment and the moment when media content is retrieved

from the client buffer [24]. Let us remark that IPD does not

consider the time of manifest file retrieval.

4.3 The simulation experiments
Adaptive streaming methods significantly differ in the inherent

mechanisms used for representation adaptation. Our objective is

to evaluate and understand the main features of the proposed

ABMA+ method and compare its effectiveness to other adaptive

algorithms, i.e. rate-based (RBA) and buffer-based (BBA).

Therefore, we analyze the behavior of adaptation algorithms

under controlled and repeatable conditions using the framework

proposed in Section 4.1. In simulation experiments, we follow

three steps presented below:

1. Step 1: Initialize the system state. In this step, we initialize the

system variables. In particular, we set t0=0, the initial buffer

occupancy B0=0, and the representation of the first segment, R1, is

set to the representation with the minimum rate, R1=min{R}.

2. Step 2: Calculate the values of system variables. In this step,

we calculate the values of the system variables for consecutively

downloaded segments. It is repeated until the last video segment

is downloaded. So, starting from segment k=1, we first calculate

the SDT of segment k, SDTk, based on the values of segment_size

and dratek corresponding to kth segment which are provided as an

input data for our analysis, see formula (15). Next, we calculate

the time instant when the kth segment is downloaded by applying

equation (14). We use the buffer occupancy after downloading the

previous segment k-1. At last, we calculate the buffer occupancy

observed after downloading kth segment by applying equation (16)

and the representation for the next segment based on equation

(17). The last equation models behavior of adaptation algorithm

and therefore it is specific for each class of algorithms.

3. Step 3: Calculate the values of performance metrics. In this

step, we calculate the values of performance metrics based on the

values of system variables derived in the step 2. In our

experiments, we calculated a subset of metrics that covers RSE,

RER, RED, RSR and RSA.

In our basic experiments performed by simulations or Internet

trials, we consider a single video client which downloads “Big

Buck Bunny” cartoon encoded in different representations ranging

from 45kbps up to 15Mbps as defined in the manifest file. The

segment playout duration was fixed to 2s (Ω=2s). In the video

client, we set the playout buffer size to 32 segments, which allows

for around 1 min of continuous video playout. This value is

typically used in commercial clients. For analyzed adaptation

algorithms, we use the default values of parameters that were

recommended by their authors. In particular, for RBA, we used

the moving average estimator with the last 50 probes. In case of

BBA, we use 𝑇𝑚𝑖𝑛 threshold (reservoir) of 5 segments, the

defined rate map by linear function between 5 and 30 segments.

For ABMA+, we assume the rebuffering probability threshold 𝜀

equal to 10-4, the SDT sample size X equals 50 probes (the same

value as used for the rate estimator in RBA), the buffer reservoir

C equal to 5 segments (the same value as used for BBA), and the

anti-oscillation factor 𝛽 equal to 0.1. We evaluated performance

of ABMA+, RBA and BBA algorithms using traces collected

from downloading the video content by a client connected by

WiFi network (the network was being shared with other users)

from the server located in Klagenfurt (Austria). The maximum

download rate was intentionally limited to 4 Mbps to create the

bottleneck at the WiFi network. We took measurements of

download rate every two seconds during more than 6 hours

(HTTP direct download of a long content). Since the available

measurements of video download rate in the Internet are scarce,

we decided to make available our measurements for researchers.

They may be found in http://wp2.tele.pw.edu.pl/disedan/

software/traces. These measurements were used in our simulation

framework to obtain the SDTk, tk and Rk values.

Fig. 3 shows the time plots of the actual buffer occupancy vs.

buffer capacity (upper plot) as well as the rate of video

representation selected by the analyzed adaptation algorithm vs.

current download rate (lower plot) that were collected for

ABMA+, RBA and BBA algorithms. In the case of the RBA

algorithm (Fig. 3a), we observe the rebuffering events and

significant variation of buffer occupancy (see situation about 850th

second) which point out that the average rate estimator does not

properly reflect the high variability of the download conditions.

Moreover, we can observe the increasing trend in the buffer

occupancy which suggests that the RBA algorithm selects lower

video representation than it would be possible. In the case of the

BBA algorithm (Fig. 3b), we observe frequent and significant

representation switching that happens even in the relatively

smooth download conditions (see situation after 1000th second).

This effect comes from the buffer occupancy oscillations that

must happen whenever download rate is not exactly the same as

the representation rate. Finally, we observe on Fig. 3c that the

ABMA+ algorithm avoids rebuffering events and minimizes the

(a
)

R
B

A
 a

lg
o

ri
th

m

(b
)

B
B

A
 a

lg
o

ri
th

m

(c
)

A
B

M
A

+
 a

lg
o

ri
th

m

Figure 3. Comparison of adaptation algorithms in simulation

experiment, where (a) RBA, (b) BBA and (c) ABMA+.

representation changes. This effect comes from the better

estimation of SDT which provides much more knowledge about

the segment arrival process than used by other algorithms.

Moreover, the ABMA+ method adjusts buffer size to current

download conditions in the range of the minimum value up to the

physical buffer capacity in order to avoid unnecessary buffering

delay. From the queuing theory viewpoint, the required buffer size

strictly depends on ov and cv values as it is shown by the buffer

map presented on Fig. 1. So, ABMA+ wants to reflect this feature.

Table 1. Performance evaluation of adaptation algorithms.

Metric
Adaptation algorithm

RBA BBA ABMA+

RSE [%] 82 98 75

RSR [%] 5 44 3.91

RSA [Mbps] 0.421 1.16 0.45

RER [%] 0.9 0.0 0.0

RED [s] 0.97 0.0 0.0

Table 1 presents the values of the performance metrics collected

in our test. We can observe that the RBA algorithm suffers from

rebuffering events, while both BBA and ABMA+ allow to

guarantee smooth content playout. On the other hand, the BBA

algorithm suffers high representation switching (RSR) at 44%. So,

it changes representation almost every two segments! Moreover,

we can observe that ABMA+ is slightly conservative. This effect

comes from the worst case assumptions exploited in proposed

model, e.g. lack of correlation in the arrival process. The results

for ABMA+ say that there is still a room for algorithm

improvements.

In the next experiment, we have analyzed the effectiveness of

ABMA+ for three videos that differ in the fast-moving scenes. We

use: 1) “Of Forest And Men” documentary film, 2) “Big Buck

Bunny” cartoon (the same as the previous experiment), and 3)

“The Swiss Account” sport video. Similar as in the previous

experiment, all videos were encoded in different representations

ranging from 45kbps up to 15 Mbps, and the segment playout

duration was fixed to 2s (Ω=2s). The obtained results are

presented in Table 2.

Table 2. Performance of ABMA+ for different videos.

Metric

Type of video

Of Forest and

Man

(documentary)

Big Bunny

(cartoon)

The Swiss

Account

(sport)

RSE [%] 77.54 77.36 75.69

RSR [%] 4.00 3.67 2.93

RSA

[Mbps]
0.378 0.38 0.48

RER [%] 0.0 0.00 0.0

RED [s] 0.0 0.00 0.0

We can observe that adaptation efficiency becomes slightly lower,

i.e. about 2%, for the sport video. This effect comes from the fast-

moving scenes that makes adaptation harder. On the other hand,

we can observe that the representation switching rate is slightly

lower but its amplitude is slightly higher. Anyway, the impact of

different videos on the ABMA+ efficiency is rather week, so we

can conclude that the efficiency of ABMA+ is almost not affected

by the type of the played video.

4.4 Trials over the Internet
The objective of the trials is to evaluate the performance of

ABMA+ approach and compare its effectiveness with other

adaptation algorithms in network environment. Specifically, we

performed measurements of the three algorithms over the Internet

and checked whether the aforementioned properties of the

algorithms are preserved in the real network.

We implemented the ABMA+, RBA and BBA adaptation

algorithms (same parameters as in the simulation test) on the top

of VLC player with DASH plug-in [36]. The algorithms are

provided as separate modules, that are called by the

HTTPConnectionManager object of the DASH plug-in just after

downloading each segment. The source code is available

http://wp2.tele.pw.edu.pl/disedan/software/abma-plus.

The experiments were performed assuming the network shown in

Fig. 4 which consists of three clients sharing the same WiFi

access network and two servers with media content available

through the Internet. On terminal labeled as Client#1 we launched

VLC player with implemented adaptive mechanisms. This player

downloaded and played “Big Buck Bunny” cartoon with constant

resolution (480x360). The segment duration equaled 2 seconds

Figure 4. Network scenario for trials.

and the representations covered bitrates from 100 to 4500 Kbps.

The cartoon was streamed by Server#1 located in Klagenfurt

(Austria) [37]. Two other terminals (Client#bkg) run, at different

moments, a number of background streaming sessions from

Server#bkg situated in Warsaw (Poland), to disrupt Clinet#1’s

streaming process.

Time plots obtained during three one-hour experiments are

presented in Fig. 5. Although the background traffic scheme (how

and when the contents are claimed by the clients) was the same in

all experiments, the traffic conditions from one experiment to

another may slightly differ due to uncontrolled interference in

wireless access network as well as varying load of paths between

access point and servers

 (
a)

 R
B

A
 a

lg
o

ri
th

m

(b
)

B
B

A
 a

lg
o

ri
th

m

 (
c)

 A
B

M
A

+
 a

lg
o

ri
th

m

Figure 5. Comparison of adaptation algorithms in the trials

over Internet, where (a) RBA, (b) BBA and (c) ABMA+.

Client#1

WiFi
Access
Point

Server#1

Client#bkg

Server#bkg

Internet

The presented plots and the values of performance metrics shown

in Table 3, confirm the conclusions derived from the simulation

experiment. In particular, the RBA leads to rebuffering events due

to inadequate modelling of the segment arrival process. The BBA

allows for the best efficiency (highest RSE value) but it suffers

from significant frequency of representation switching (the value

of RSR metric is four times higher than for other algorithms).

Table 3. The values of performance metrics in Internet trials.

Metric
Adaptation algorithm

RBA BBA ABMA+

RSE [%] 90 94 86

RSR [%] 4 16 4

RSA [Mbps] 0.490 0.487 0.509

RER [%] 1.7 0.0 0.0

RED [s] 2.19 0.0 0.0

In contrary to results achieved by simulations (see Section 4.3),

value of RSA metric for the BBA is on a similar level as for other

adaptations. The reason can be found in the fact that a significant

number of representation switches was carried out between

representations of low bitrates (see Fig. 5b, period between 1100

and 2100 s), which decisively decreased RSA metric. In turn, the

ABMA+ avoids rebuffering events at the cost of slightly lower

efficiency. Moreover, it allows to avoid frequent representation

switching which is the main drawback of the BBA approach (and,

in general, the buffer-based algorithms).

5. SUMMARY & CONCLUSIONS
The paper proposes new algorithm for HTTP adaptive streaming,

called ABMA+, that adapts video representation based on the

estimated probability of video rebuffering. The algorithm

continuously estimates segment download time characteristics and

exploits pre-computed playout buffer map to select the maximum

video representation, which satisfy the assumed rebuffering

threshold. Thanks to exploiting the pre-computed buffer map, the

ABMA+ algorithm avoids heavy on-line calculations allowing to

get benefits of rebuffering based approach even on thin video

clients. The paper contribution covered: i) proposal for new

adaptation algorithm exploiting pre-computed buffer map, called

ABMA+, ii) improved model of the adaptive streaming system

used for calculating buffer maps, which reflects impact of the

adaptation control logic by using state dependent description of

the arrival process, iii) prototype implementation of ABMA+

method as DASH plug-in to VLC, iv) a framework for

performance evaluation of different adaptive video streaming

algorithms and v) performance evaluation of ABMA+ method in

comparison to the rate- and buffer-based approaches.

The obtained numerical results confirmed that the ABMA+

method efficiently adjusts video representation to the variable

network conditions allowing to minimize the risk of video

freezing and preventing frequent representation switching.

Moreover, the pre-computed buffer map eliminates heavy on-line

computations making our approach feasible for widely

deployment. Therefore, we believe that proposed ABMA+

method constitutes an interesting alternative for currently

exploited rate- and buffer-based adaptation algorithms.

6. ACKNOWLEDGMENTS
This work is partially founded by the DISEDAN project within

the European CHIST-ERA Program. We want to thank all project

partners for their support and contribution to the ideas presented

here.

7. REFERENCES
[1] T. C. Thang, et al. Adaptive Streaming of Audiovisual

Content using MPEG DASH. IEEE Transactions on

Consumer Electronics. Vol. 58, No. 1, pp. 78-85, Feb. 2012.

[2] S. Akhsabi, A. Begen and C. Dovrolis. An Experimental

Evaluation of Rate-Adaptation Algorithms in Adaptive

Streaming over HTTP. ACM MMSys, New York, 2011.

[3] J. Jiang, V. Sekar and H. Zhang. Improving Fairness,

Efficiency, and Stability in HTTP-based Adaptive Video

Streaming with FESTIVE. ACM CoNEXT, 2012.

[4] T. Huang, R. Johari and N. McKeown. Downton Abbey

Without the Hippcus: Buffer-Based Rate Adaptation for

HTTP Video Streaming. ACM FhMN Workshop.

SIGCOMM, Hong Kong, 2013.

[5] Te-Yuan Huang et al. A Buffer-Based Approach to Rate

Adaptation: Evidence from a Large Video Streaming

Service. ACM SIGCOMM, 2014.

[6] Hung T. Le et al. Buffer-based Bitrate Adaptation for

Adaptive HTTP Streaming. International Conference on

Advanced Technologies for Communications (ATC), 2013.

[7] L. D. Cicco et al. ELASTIC: a Client-side Controller for

Dynamic Adaptive Streaming over HTTP (DASH). IEEE

Packet Video Workshop, San Jose, USA, 2013.

[8] M. Seufert, et al., A Survery on Quality of Experience of

HTTP Adaptive Streaming. IEEE Communications Surveys

& Tutorials, 2015.

[9] P. Wiśniewski, A. Beben, J. M. Batalla, P. Krawiec. On

delimiting video rebuffering for stream switching adaptive

applications. IEEE ICC, 2015

[10] J. M. Batalla, et al., Adaptive video streaming: rate and

buffer on the track of minimum re-buffering“, Journal of

Selected Areas of Communications, 2016 (accepted for

publication)

[11] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for

adaptive http streaming. ACM MMSys, New York, 2011.

[12] G. Tian, Y. Liu. Towards agile and smooth video adaptation

in dynamic HTTP streaming. ACM CoNEXT, 2012.

[13] K. Miller, et al. Adaptation Algorithm for Adaptive

Streaming over HTTP, Packet Video Workshop, 2012.

[14] H. Balakrishnan, S. Seshan, M. Stemm, and R. H. Katz.

Analyzing Stability in Wide-Area Network Performance. In

ACM SIGMETRICS, June 1997.

[15] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the

Characteristics and Origins of Internet flow rates. In ACM

SIGCOMM, 2002

[16] K. Kim and H. A. Latchman. Statistical traffic modeling of

MPEG frame size experiments and analysis. 2009.

[17] K. Salah, F. Al-Haidari, M. H. Omar, and A. Chaudhry.

Statistical analysis of H.264 video frame size distribution.

Communications, IET , vol. 5, no. 14, 2011

[18] S. Asmussen, J.L. Jensen, L. Rojas-Nandayapa. On the

Laplace transform of the Lognormal distribution.

Methodology and Computing in Applied Probability,

Springer, DOI 10.1007/s11009-014-9430-7, pp. 1-18,

December (2014)

[19] A. Finamore, M. Mellia, M.M. Munafò, R. Torres and S.G.

Rao, YouTube everywhere: impact of device and

infrastructure synergies on user experience. ACM

SIGCOMM. 2011.

[20] S. Akhshabi, et al. What Happens when HTTP Adaptive

Streaming Players Compete for Bandwidth?. NOSSDA.

2012.

[21] R. Jain, A. Durresi, and G. Babic. Throughput fairness index:

An explanation. The Ohio State University, Department of

CIS, Columbus, OH, 1999.

[22] C. Mueller, S. Lederer and C. Timmerer. A proxy effect

analysis and fair adaptation algorithm for multiple competing

dynamic adaptive streaming over HTTP clients. IEEE Visual

Communications and Image Processing (VCIP), 2012.

[23] L. D. Cicco, S. Mascolo and V. Palmisano. Feedback Control

for Adaptive Live Video Streaming. ACM MMSys, 2011.

[24] O. Oyman and S. Singh. Quality of Experience for HTTP

Adaptive Streaming Services. IEEE Communications

Magazine, vol. 50, issue. 4, pp. 20-27, April 2012.

[25] C. Muller, S. Lederer and C. Timmerer. An Evaluation of

Dynamic Adaptive Streaming over HTTP in Vehicular

Environments. 4th Workshop on Mobile Video, 2012.

[26] M. Fiedlet, T. Hossfeld and P. Tran-Gia. A generic

quantitative relationship between Quality of Experience and

Quality of Service. IEEE Network, vol. 24, issue 2, 2010.

[27] C. Alberti et al. Automated QoE evaluation of Dynamic

Adaptive Streaming over HTTP. Fifth Inter. Workshop on

Quality of Multimedia Experience (QoMEX), 2013.

[28] X. Deng and G. Han. QoE Evaluation for HTTP Adaptive

Streaming. Informational Draft: draft-deng-tsvwg-qoe-

evaluation-has-00.txt, June 2014.

[29] 3GPP TS 26.247 version 11.1.0 Release 11.

[30] V. Joseph, De Veciana G. NOVA. QoE-driven Optimization

of DASH-based Video Delivery in Networks. IEEE

INFOCOM, Canada 2014.

[31] F. Dobrian et al. Understanding the impact of video quality

on user engagement. ACM SIGCOMM 2011.

[32] P. Le Callet, S. Moller, A. Perkis. Qualinet White Paper on

Definitions of Quality of Experience. European Network on

Quality of Experience in Multimedia Systems and Services,

Laussane, Switzerland, June 2012.

[33] P. Ni, R. Eg, A. Eichborn, C. Griwodz, P. Halvorsen. Spatial

flicker effect in video scaling. International Workshop on

Quality of Multimedia Experience (QoMEX), 2011.

[34] R. Mok, X. Luo, E. Chan, and R. Chang. QDASH: A QoE-

aware DASH system. ACM MMSys, 2012.

[35] X. Yin, V. Sekar and B. Sinopoli. Toward a Principled

Framework to Design Dynamic Adaptive Streaming.

Algorithms over HTTP”, 13th ACM Workshop on Hot

Topics in Networks, 2014.

[36] C. Müller, C. Timmerer. A VLC Media Player Plugin

enabling Dynamic Adaptive Streaming over HTTP. ACM

Multimedia, 2011.

[37] Stefan Lederer, Christopher Müller and Christian Timmerer.

Dynamic Adaptive Streaming over HTTP Dataset. ACM

MMSys 2012.

