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ABSTRACT
Adaptive streaming systems gain rising relevance for stream-
ing services. Therefore, the same video is offered in multi-
ple quality versions to clients for adaptation during play-
back. However, optimizing adaptation in a Quality of Ex-
perience (QoE) centric way is difficult. Current systems
maximize bit rate, ignoring that different types of adap-
tation (resolution, framerate, quantization) correlate differ-
ently and in a non-linear way with user’s perception. User
validated video quality metrics can provide precise quality
information. However, measurements of state-of-the-art me-
trics show either high computational intensity or weak cor-
relation with subjective tests. This makes large-scale offline
quality assessment processing intensive while real-time con-
strained scenarios like live streaming and video conferencing
are hardly supportable. Consequently, this work presents
the Real-Time Video Quality Metric (RT-VQM), a real-
time, Graphics Processing Unit (GPU) supported version
of the widely used Video Quality Metric (VQM). RT-VQM
introduces efficient filtering operations, hardware-supported
scaling and high-performance feature pooling. The approach
outperforms VQM by a factor of 30, thus enabling a real-
time assessment of up to 9 parallel video stream representa-
tions up to High Definition (HD) 720 resolution at 30fps.

CCS Concepts
•Information systems → Multimedia streaming;
•Theory of computation → Massively parallel algo-
rithms;
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Adaptive Video Streaming; General Purpose GPU; Video
Quality Metric; Real-time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10-13, 2016, Klagenfurt, Austria
© 2016 ACM. ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910600

1. INTRODUCTION
During the last decade, Internet-based video streaming

has evolved from a niche market to a highly commercialized
business sector which is predicted to grow even faster in the
near future [8] For payment-based business models such as
Netflix [7], the delivery of video streams with a high QoE is
highly important to ensure the loyalty of customers.

Modern streaming protocols such as Dynamic Adaptive
Streaming over HTTP (DASH) [19] and layered video codecs
such as the H.264/H.265 Scalable Video Coding (SVC) ex-
tensions [17, 10] aim at ensuring high QoE by adapting video
quality (resolution, framerate, quantization) and thus bit
rate to prevent freezing playback for rebuffering (stalling).
However, quality adaptation and the increasing variety of
end-devices lead to a bloat of different video quality versions
to be chosen from. As an example, YouTube serves up to 20
parallel versions of the same video, while Netflix offers up
to 120 different versions due to a combinatorial explosion of
supported quality levels and video codecs [11]. The plethora
of options renders optimal adaptation path selection difficult
as bit rate and QoE is correlated in a different, usually non-
linear way for each type of quality adaptation [27].

A quantification of visual quality impairments between
a stream’s different quality versions can be approximated
by utilizing subjectively adjusted and validated Full Refer-
ence (FR) QoE metrics. FR metrics compare the different
quality versions by extracting visual quality features and
feeding the result into a validated human vision-based per-
ception model [9]. However, models showing a high cor-
relation to subjective user perception are computationally
intensive leading to execution times several orders of magni-
tude higher than the assessed video’s playback time (see Sec-
tion 2.2 for measurements). Consequently, real-time quality
assessment of live streams and adaptive video conferencing
is not possible and offline quality assessment for Video on
Demand (VoD) is resource consuming.

As a solution, this work presents the RT-VQM, a real-
time, GPU supported version of the highly precise and
standardized VQM of Pinson et al. [16]. Therefore,
VQM is decomposed into its operations, analyzed and ex-
tended for optimized memory access, efficient feature extrac-
tion, hardware-supported interpolation methods and high-
performance feature pooling algorithms. Motivated by the
different types of scalability, we investigate VQM’s reaction
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to changes in resolution, framerate, and quantization, i.e.,
the Signal-to-Noise Ratio (SNR). RT-VQM’s source code is
contributed to the community for future research1.

The remainder of this work is organized as follows: Sec-
tion 2 describes background information on video quality
adaptation and video quality metrics including execution
time and correlation measurements. Section 3 provides an
in-depth analysis of the VQM algorithm of Pinson et al.
[16]. In Section 4 a GPU-optimized system design for a
parallel version of the VQM algorithm is discussed. Per-
formance/precision trade-offs and VQM’s reaction to differ-
ent types of quality adaptation are quantified in Section 5.
Finally, Section 6 summarizes the results and provides an
outlook on future work.

2. BACKGROUND AND RELATED WORK
The remainder part of this work focuses on H.264/H.265

scalable video codecs for the videos and is agnostic to the
used video streaming protocol. We have chosen SVC based
streaming [17, 10] to dynamically adapt the video at any
point in time during a streaming session. Nevertheless,
the system and results can be transferred to Constant Bi-
trate (CBR) HTTP Adaptive Streaming (HAS)-based sys-
tems such as MPEG-DASH without any loss of generality,
as RT-VQM and the applied methodology is independent
of the underlying video encoding or streaming protocol.

2.1 Scalable Video Encoding
Scalable video encodings offer the potential to adapt the

video to changing network conditions at runtime. Well-
established and standardized approaches include the scal-
able extensions of H.264 and H.265 [17, 10]. Both allow
the decoding of a multi-layer bit stream enabling to switch
between quality representations at run-time.

Thus, one video can be transmitted to multiple clients
and each device can select the appropriate quality depend-
ing e.g. on the current network throughput. H.264 as well
as H.265/SVC rely on a three-dimensional quality model in-
cluding adaptation of the spatial, temporal dimension and
quantization, i.e., SNR, dimension. Each combination of the
quality dimensions is encoded in one video layer as depicted
in Figure 1. Figure 1 shows an example of a scalable video
cube, a common representation of SVC. An increase in one
dimension requires preceding layers for decoding but also in-
creases the quality of the respective video. The lowest rep-
resentation is called the base layer and represents the only
independently decodable layer. SVC enables seamless adap-
tation of video quality to network resources during playback.

2.2 Video Quality Metrics
This work enables video streaming systems to adapt ac-

cording to the subjective perception of video quality in real-
time. Thus, we investigate the potential of different Full
Reference (FR) metrics for a usage in real-time settings and
their correlation with human perception. FR metrics require
both, an impaired and a reference video sequence. A sum-
mary of the findings is listed in Table 1, including execution
time measurements obtained by comparing two 15s HD720
(1280 × 720) videos at 30fps using the hardware described
beforehand. The video footage inspected is the well known,
balanced LIVE Mobile Video database [13].

1https://github.com/mwichtlh/rt-vqm

Figure 1: The H.264/H.265 SVC model represented as a
cube of quality representations.

Simple and fast objective video quality metrics are ap-
proximating the perceived video quality by pixel compar-
ison. These point-based metrics include the Peak Signal
to Noise Ratio (PSNR), which measures the average er-
ror of pixel intensities between an impaired video sequence
and its unimpaired reference. An advantage of PSNR and
other similar point-based approaches is the low execution
time of 1.6s. However, due to a Pearson Correlation Coeffi-
cient (CC) below 0.41 to the user’s perception, PSNR only
serves as a baseline for comparison.

VQM was developed by Pinson and Wolf for the Na-
tional Telecommunication and Information Administration
(NTIA) [26] and leverages quality calculation by extract-
ing and comparing features in Spatio-Temporal Regions
(ST-Regions) of a reference and an impaired video sequence.
Contrast information is used for a majority of the influence
factors of the VQM whereas other features leverage color
information. During the VQEG Test Phase II, VQM out-
performed several other state-of-the-art video quality met-
rics and was thus standardized [2, 3]. The execution time
measurements of VQM show that the reference implementa-
tion is far from real-time capabilities (15s of video playback).
However, of all metrics with a correlation higher than 0.6,
VQM reaches the best ratio of execution time and CC.

A natural visual characteristics algorithm called Struc-
tural Similarity Index (SSIM) was introduced by Wang et
al. [24]. SSIM leverages the assumption that especially
changes in the structural information domain are important
to describe perceived quality differences [23]. Thus, the au-
thors defined a proportional decrease of perceived quality
in relation to the decrease of structural similarity between
an original and the distorted frame. In a subjective eval-
uation, SSIM shows a better performance than PSNR. A
multi-scaled variant (MS-SSIM [25]) could even improve the
accuracy. The main advantage of MS-SSIM is a dynamic
adaptation of parameters according to the viewing condi-
tions. In different viewing situations different scales show
superior quality. However, since MS-SSIM was designed for
still images, it does not consider the temporal dimension of
a video. The authors of [22] extend MS-SSIM for a consider-
ation of the temporal dimension. These extensions increase
the correlation of SSIM on videos at the cost of computa-
tional complexity. Table 1 shows the measured execution
time to be as high as 104s for a 15s video.

Seshadrinathan et al. developed the MOtion-based Video
Integrity Evaluation index (MOVIE) [18]. Unlike SSIM, it
does not directly examine video footage for visible distor-



Table 1: A comparison of state-of-the-art full-reference video quality metrics. Columns show the classification of the metric
(Category), the support of temporal attributes (Motion), its execution time in seconds to compare two 15s of HD720 video
at 30fps videos using the hardware described beforehand (lower is better), the correlation with subjective studies (CC, higher
is better), a ratio of execution time and CC (lower is better) and a standardization status.

Algorithm Category Motion
Exec. Time [s]
Reference Impl.

Corr. (CC)
LIVE DB [20]

Exec. Time
per CC [s]

Standardization /
Recommendation

PSNR point-based agnostic 1.6 0.4035 3.97 no
VQM [26] natural visual supported 88 0.7236 121,61 ANSI/ITU [2, 3]
(MS-)SSIM [25] natural visual supported 104 0.7441 139.76 no
MOVIE [18] perceptual supported 2732 0.8116 3366.19 no
(ST-)MAD [12] perceptual supported 54876 0.8299 66686.11 no

Figure 2: Essential steps to perform a VQM measurement (inspired by [16]). The video frame is taken from the Big Buck
Bunny movie (http://www.bigbuckbunny.org), (c) Blender Foundation.

tions such as the loss of structures. Instead, MOVIE tries to
imitate the perception of the Human Visual System (HVS)
and is thus classified as a perceptual video quality metric.
MOVIE achieves similar results or even outperforms exist-
ing, leading metrics in terms of correlation to user’s per-
ception (see Table 1). The disadvantage of MOVIE is the
resulting processing time caused by a complex Gabor de-
composition [14]. MOVIE requires more than 2700s for cal-
culating the quality of an impaired 15s video. It has been
shown that calculations including Gabor decomposition can
be efficiently implemented on a GPU with an acceleration
of more than 30 times [21]. However a real-time calculation
would require a speedup by a factor of 2000.

Larson and Chandler developed Most Apparent Distortion
(MAD) an algorithm for quality assessment in images [12].
MAD mimics the HVS perception of different levels of distor-
tions in images and shows a better correlation with the HVS
than PSNR and SSIM. They apply luminance and chromi-
nance filters to create a visibility map. This map indicates if
distortions are present in different areas of the image. Since
MAD was designed for quality assessment in images, Vu et.
al. proposed spatio-temporal MAD (ST-MAD) to apply the
metric to video footage [20]. Even though Phan et. al. uti-
lized GPU acceleration to accelerate ST-MAD by a factor of
47, the algorithm is still far from real-time capabilities [15].
The measured execution time for ST-MAD is as high as 15
hours for 15s of video.

The ITU-R J.247 describes Perceptual Evaluation of
Video Quality (PEVQ) [4] as the leading perceptual FR
video quality metric. PEVQ is a very robust approach as
it relies on a very small set of features. It relies on the
analysis of temporal, spatial, chrominance and luminance
distortions between a reference and a test sequence. The
algorithms relies on a five stage process. An initial stage
excludes the border regions as distortions in this area are
usually not perceived as degrading the quality. In a second
step temporal misalignments between the reference and test

sequence are detected and corrected. During the processing
step the luminance values are adjusted. The third step in-
cludes a spatial alignment and the correction of the chroma
components. During the last two steps first the distortion
analysis is performed based on the previously mentioned fea-
tures and mapped into a single Mean Opinion Score (MOS)
value. However, the source code is patented and not freely
available for evaluation. Due to its complexity the algo-
rithm should be significantly slower than VQM and harder
to be parallelized. Thus, PEVQ has been excluded from our
evaluation and as a candidate for real-time video quality
evaluation.

The synopsis presented in Table 1 reveals that none of
the discussed metrics seems to be appropriate for real-time
and highly correlated quality assessment, i.e., less than 15s
of execution time and a higher CC than 0.6 when compar-
ing the metric’s output to subjective tests. Especially the
perceptual based metrics MOVIE and ST-MAD stand out
with a high CC but pay for the increased precision with an
exponentially higher execution time. MS-SSIM and VQM
offer a good trade-off of execution time and CC. MS-SSIM
reaches a slightly higher CC than VQM, while VQM offers
a lower execution time and thus a better ratio of execu-
tion time per CC. Consequently, VQM is chosen as a base
for this work also taking into account that VQM is vali-
dated in large scale user studies [16] and standardized by
the American National Standard Institute (ANSI)/Interna-
tional Telecommunication Union (ITU).

3. VQM ANALYSIS
The fundamental steps of VQM to achieve a highly cor-

related approximation of video quality for SVC streams are
depicted in Figure 2. The assessment starts with a pair-
wise extraction of the different SVC representations from
the encoded stream, where the highest quality layer acts
as a reference for all other layers. Both videos are decom-
pressed to the YCbCr color space (one luma channel Y and
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two chrominance channels CbCr). In a Sampling (S) step,
the data is converted to a floating point representation to
provide enough precision for the following calculation steps.

Afterwards, the Filtering and Smoothing (FS) step applies
an edge filter to the frames and calculates a set of measures
for edges and a measure for the temporal changes. The
Quality Feature Calculation (FC) step pools the output of
the FS step to a set of single feature values per ST-Region,
i.e., a disjoint cube of pixels in the horizontal and vertical
dimension spanning 0.2s of video (e.g., 8 × 8 pixels span-
ning 6 frames at 30fps). Subsequently, the ST-Regions from
both video sequences are compared by the Quality Param-
eter Calculation (PC) step, resulting in an ST-Region error
matrix quantifying the feature-wise difference between both
videos. The errors for each feature set are pooled spatially
and temporally to a single value per feature. Finally, the
single value representations for each feature are combined in
the VQM Model Calculation (M) step by calculating a user-
validated linear regression model. The resulting impairment
value is annotated to the respective SVC layer to quantify
the QoE loss compared to the highest layer.

The decomposition of VQM into its single processing steps
allows for an assessment of its potential to be accelerated.
For that purpose, three metrics are measured for each step of
the reference implementation of VQM: the absolute through-
put T , the arithmetic intensity A and the absolute execution
time E.

The absolute throughput is defined as:

T MPixel/s =
rh ∗ rv ∗ |f |

t
, (1)

where rh and rv are the horizontal and vertical resolution,
|f | represents the number of frames and t is the length of
the assessed scene. Intuitively, T measures the number of
pixels of a video sequence that can be processed per second.
Consequently, if the sum of all encoded layer’s pixels per
second in an SVC stream is smaller than T , the whole SVC
cube can be assessed in real-time.
T is a well suited measure for identifying bottleneck pro-

cessing steps worth to be accelerated. Nevertheless, T can
not indicate the structural suitability of a processing step for
parallelization. Therefore, the arithmetic intensity of each
step is measured.

Arithmetic intensity is defined as:

A FLOP/LDST =
C FLOP

M LDST
, (2)

where C represents the number of Floating Point Opera-
tions (FLOPs) and M is the number of Load/Store Opera-
tions (LDSTs), i.e., memory access operations. Intuitively,
A defines the fraction of clock cycles spent performing cal-
culations compared to the cycles spent for accessing and
storing data in memory. A high arithmetic intensity iden-
tifies steps bound by processing capabilities and not bound
by Input-/Output (I/O) operations, which makes them es-
pecially suitable for a parallelization using GPUs [6].

The measured results of the reference implementation are
depicted in Figure 3. The hardware used for all measure-
ments presented in this work is based on an Intel Core i7
4770 Central Processing Unit (CPU) running at 3.4GHz.
The machine’s Random Access Memory (RAM) is as large
as 16GB. Additionally, a GeForce GTX 780 Ti GPU is
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(c) Absolute execution time E; category Other (O) represents
parts of the code that could not be assigned clearly. The dashed
line represents the performance necessary to achieve real time
operation for the comparison of two versions of the stream, only.

Figure 3: Metric distribution of reference VQM version over
processing steps. Results are averaged over 10 runs of a 15s
video sequence from the LIVE Mobile database [13] at 30fps.
The standard deviation is smaller than 1% for all results.

used to measure the GPU code. The GPU runs at 1.05GHz
and can access 3GB of RAM. Both are connected via a
Peripheral Component Interconnect (PCI) express bus with
16 lanes.

For obtaining the measurements, two video sequences of
15s at 30 fps are compared using three different resolutions
covering HD720 (1280×720), WVGA (720×400) and WSIF
(680 × 384). All measurements are averaged over 10 runs,
the standard deviation was always smaller than 1% of the
average value.

The results in Figure 3a show that the overall through-
put is limited by the Sampling (S), Filtering and Smooth-
ing (FS), and Quality Feature Calculation (FC) steps. More-
over, the reference implementation executes a large frac-
tion of time intense copy operations that cannot be assigned
clearly to one of the steps (category Other (O)). The Qual-
ity Parameter Calculation (PC) step is outstanding showing
a comparably high throughput caused by the very small ab-



solute execution time (Figure 3c) of this step. Notably, the
throughput stays remarkably constant when comparing the
three resolutions, thus indicating the performance to scale
linearly with the number of pixels to be processed.

Figure 3b depicts the arithmetic intensity per step. In or-
der to account for the caching capabilities of modern CPU
hardware, only Level 1 cache misses, i.e., memory access op-
erations that cannot be served from the on-chip cache, are
counted as LDST operations. Remarkably, the Quality Pa-
rameter Calculation (PC) calculation step has the highest A
of all steps. However, the absolute runtime of this step (Fig-
ure 3c) indicates that Quality Parameter Calculation (PC)
is not critical for real-time assessment, as the step accounts
for less than 1% of the overall run time. As expected for
classical graphics processing algorithms, the Filtering and
Smoothing (FS) and Quality Feature Calculation (FC) step
have a comparably high arithmetic intensity indicating they
are well suited for a parallelization on a GPU. Finally, the
Sampling (S) step has the lowest arithmetic intensity in-
dicating it should be the last of the sub-algorithms to be
parallelized.

4. RT-VQM DESIGN
In the preceding chapter, steps suitable for a massive par-

allelization of the VQM algorithm are identified, laying the
base for deciding on which parts of the algorithm should
be running as a kernel function, i.e., an independently ex-
ecutable unit of code executed by the GPU. However, be-
sides the three criteria A, T , and E, the restrictions of bus
transfers have to be taken into account. In fact, the GPU
constitutes a separate co-processing unit. Thus, it behaves
like a separate device running parallel to the CPU (host) and
possesses its own memory. Consequently, all data to be pro-
cessed by the GPU has to be transferred using the PCI bus,
which can - despite the large theoretical throughput – easily
become a performance bottleneck. Thus, RT-VQM’s design
presented in this chapter is not only based on the three met-
rics, but also chosen in a way that minimizes bus transfers.
Based on these architectural considerations and our mea-
surements, the following design decisions for RT-VQM are
taken.

For the Sampling (S) step, the low absolute throughput
at a low arithmetic complexity is a border case for a paral-
lelization. Low arithmetic complexity suggests that an op-
timized, non-parallel implementation might be able to solve
the sampling problem efficiently as well. Nevertheless, sam-
pling creates a considerable bloat of video data resulting in
a bus bottleneck. In particular, sampling increases the bit
depth of a pixel from 12bits to 192bits, i.e., the video data
volume is increased by a factor of 16 due to a conversion to
a double precision floating point representation and a reor-
ganization of the Cb and Cr channel.

We account for the data bloat during sampling by two
countermeasures: first, the sampling step is handled by the
GPU. Thus, the data bloat is happening in the GPU mem-
ory after the bus transfer of the unsampled video data. Sec-
ond, the video data is sliced before transferring the data to
the GPU’s memory as this allows to already process video
data on the GPU while transferring the next slice from the
host’s memory. This optimization allows to nearly com-
pletely hide the bus latency by interleaving processing and
transfer of the data (asynchronous transfers/bus latency hid-
ing). However, an arbitrary slicing is not possible, as the FS

Figure 4: Proposed VQM calculation process on a GPU sys-
tem. A detailed overview of the FS and FC steps is provided
in Figure 6

and FC steps rely on complete ST-Regions to calculate fea-
tures. Consequently, the slicing step cuts the video accord-
ing to the borders of ST-Regions in the temporal dimension,
i.e., usually a number of six unsampled consecutive frames
forming one complete grid of ST-Regions is transferred at
the same time.

Moreover, sampling on the GPU allows to account for the
different types of scalability induced by SVC in a fast and el-
egant way. As VQM is defined and validated for comparing
video material of equal resolutions and frame rates, a fast
interpolation method is necessary before the comparison is
done. For that purpose, the texture units of the GPU are
utilized by treating the video material as a three dimensional
texture. Three dimensional textures enable linear interpo-
lation in hardware along three dimensions, i.e., accessing an
interpolated texture value can be performed as fast as ac-
cessing a memory location. Using the texture units allows
to treat the video frames like a non-discrete field of inter-
polated values generated from the supporting grid provided
by the video material. Consequently, the sampling step can



(a) Frame Interpolation mode (b) Frame Duplication mode (c) Feature Duplication mode

Figure 5: Description of designed and evaluated temporal interpolation methods.

Figure 6: Close-up of the GPU based Filtering and Smoothing (FS) and Quality Feature Calculation (FC) process and
intermediate results. The green boxes show the splitting of processing steps of VQM to GPU kernel functions.

provide a fast spatial and temporal upscaling to the refer-
ence video’s resolution and framerate.

However, the upscaling along the temporal dimension
leaves further room for optimization. It might also be pos-
sible to double the frames or even the feature sets without
large impact to VQM’s precision. The latter can be expected
to be faster by an order of magnitude. Thus, three differ-
ent modes are implemented: the Frame Interpolation mode
(see Figure 5a) interpolates missing frames as described be-
forehand. This mode has the advantage of being able to
handle temporal downscaling even with frame rates other
than 1

2n
, n ∈ N of the reference video’s frame rates. For all

other cases, the Frame Duplication mode (Figure 5b) and
Feature Duplication mode (Figure 5c) may be more advan-
tageous in terms of execution time. The impact on precision
is evaluated in Section 5.

After sampling, the Filtering and Smoothing (FS) and
Quality Feature Calculation (FC) steps are considered. Both
are classical GPU operations. In particular, the Filtering
and Smoothing (FS) step has a high arithmetic intensity at
low throughput, offering large potential for parallelization.
The operations of both steps are restructured and divided
to run on nine different GPU kernel methods (see Figure 6).

The FS step is split into a spatial filtering process and a
temporal filtering process. The spatial filtering process de-

pends on one horizontal and one vertical filtering operation
using a convolution matrix of size K = 13 × 13 on the lu-
minance channel. As for Sobel filtering, the operation can
be decomposed into two operations using two convolution
matrices K = Ke · Ks, where Ke performs edge detection
and Ks performs smoothing, and · denotes a matrix multi-
plication. RT-VQM utilizes this optimization and splits the
Filtering and Smoothing (FS) to four GPU kernel functions,
i.e., two edge filters and two smoothing filters (see Figure 6).
This decomposition allows to run four compact kernel func-
tions that can be executed with a higher hardware utiliza-
tion than one large kernel function, as all necessary values to
perform the convolution can be kept in the GPU’s limited
on-chip memory. As opposed to that, calculating the full
13× 13 kernel would require storing intermediate results in
the GPU’s comparably slow global memory.

After edge filtering and smoothing in horizontal as well as
vertical direction, the results are combined by the SI&HV
kernel. Basically, the SI&HV kernel distinguishes the gradi-
ents calculated by the preceding kernels based on two met-
rics. The first is the length of the gradient:

R(i, j, t) =
√
H(i, j, t)2 + V (i, j, t)2, (3)

where H(·) denotes the horizontally filtered frame and



V (·) denotes the vertically filtered frame. The second is an
approximation of the direction of the gradient:

θ(i, j, t) = tan−1

[
H(i, j, t)

V (i, j, t)

]
≈ min(H(i, j, t), V (i, j, t))

max(H(i, j, t), V (i, j, t))
.

(4)

Both values, R as well as θ are calculated by the SI&HV
kernel and are used to extract three features: The value of
R is integrated into the SI set. The value of θ is used to
separate detected edges into vertical and horizontal edges
indicating block artifacts (HV) and diagonal edges (HVB),
given R exceeds a threshold Rmin.

These operations impose several challenges for a parallel
implementation resulting in the SI&HV kernel being one of
the most complex of all kernels designed in the scope of this
work. First filtering the values for a threshold Rmin induces
branching into different paths of execution. Branch diver-
gence is problematic as GPU processors’ design follows the
Single Instruction Multiple Threads (SIMT) principle, i.e.,
usually the same instruction is executed on an array of data.
However, if branching based on input data occurs, the two
execution branches are executed sequentially which results
in a low hardware utilization. Moreover, the calculation of
R includes a square root operation which is computationally
intensive. However, splitting this kernel into two smaller
ones to avoid branch divergence is a bad solution, as this
requires storing and reloading of R values using the GPU’s
slow global memory. The final design of the SI&HV kernel is
a compromise between branch divergence, kernel complex-
ity and global memory transfers. Nevertheless, the kernel
might be optimized in the future when GPUs with a higher
I/O performance are available.

As opposed to spatial filtering, the temporal filtering logic
is uncritical and can be realized as a single kernel, as it
merely calculates the difference in luminance between con-
secutive frames. The results (ATI) are written to global
memory on a per-frame basis.

After the FS step, the four intermediate results are pooled
to a single feature value per ST-Region by the Quality Fea-
ture Calculation (FC) step. The measurements of the refer-
ence implementation depicted in Figure 3 indicate that the
FC step has a slightly higher throughput T than the FS
step, however the arithmetic intensity is only roughly half
as high. This step is again a border case for paralleliza-
tion. The decision to perform this step on the GPU is again
based on considering PCI bus transfer times: after pooling
the feature per ST-Region the data to be considered for a
transfer over the PCI bus is much smaller than before, i.e.,
only one value per ST-Region has to be transferred per fea-
ture (HVB, HV, SI, ATI). More precisely, the pooled data
volume was measured to be only as high as 3% compared
to the non-pooled data volume, thus rendering bus transfer
times negligible.

In order to perform the FC step, optimized kernels for dif-
ferent statistical operations (mean and standard deviation)
on two dimensional (per-frame) and three dimensional (per
ST-Region) data structures are utilized as depicted in Fig-
ure 6. Nevertheless, pooling data with a large number of
threads on a GPU is challenging.

The main problem is to ensure a high hardware utiliza-
tion: GPUs are only capable to run batches of threads
with a fixed size W , where W can be parameterized before

(a) Naive pooling of a 4x4x4 ST-Region with batch size W = 16.
The batch utilizes 44% of the reserved resources.

(b) Optimized pooling of a 4x4x4 ST-Region with batch size W =
4 threads. The batch utilizes 87.5% of the reserved resources.

Figure 7: Optimized feature pooling versus naive pooling.

starting the kernel but stays constant throughout execution.
However, the nature of a pooling procedure requires a sin-
gle value as an outcome requiring exclusive memory access
whenever threads running in parallel aggregate values across
the threads. This type of access synchronization leads to a
serialization of threads resulting in low hardware utilization.

The need to provide an optimized pooling method be-
comes evident when comparing a naive pooling method
(Figure 7a) with the proposed and implemented optimized
pooling method depicted in Figure 7b. The naive pooling
method uses a batch size of W = 16 for collapsing in three
steps along the three dimensions. Only the first step utilizes
the full batch of 16 threads. In the second step, 12 of 16 re-
served threads are idle and in the third step 15 of 16 reserved
threads are idle, resulting in an average utilization of 44%
of the reserved resources per step. As opposed to that, the
optimized pooling method only uses a batch size of W = 4
threads, but uses all four threads during the pooling process
except for the last step, where 3 threads are stopped and one
thread performs the final aggregation. Consequently, an av-
erage utilization of the reserved resources of 87.5% per step
can be achieved. Notably, the gap increases in a cubic way
when increasing the size of the ST-Region. As opposed to
Figure 7, most of VQM’s features rely on larger ST-Regions
of size 8× 8× 6 [26, 16].



After the Quality Feature Calculation (FC) step, six
feature sets (CB, CR, HVB, HV, CONT, ATI) reside in
the GPU’s global memory (see Figure 6). VQM defines
four aggregated features (COLOR COHER mapping color
changes, HV13 mapping edge changes, SI13 mapping struc-
tural changes, and CONT ATI mapping temporal changes
weighted by contrast changes) as cross products of the single
features. The aggregated features will not be explained in
detail in this work, a more precise description can be found
in [26, 16]. Notably, all feature values calculated up to this
point exist per ST-Region.

Calculating one value per feature for the entire sequence is
done in the Quality Parameter Calculation (PC) step, which
performs a second pooling step over all previously pooled
ST-Regions. The performance analysis of VQM revealed a
high throughput at a low absolute runtime of about 0.5s for
the PC step (see Figure 3). The reason for the comparably
high throughput of the reference implementation is the low
data volume to be processed, as the preceding FC step con-
denses the data volume to be processed by 97%. Thus, the
data volume is small enough to be transferred back efficiently
using the PCI bus. At the same time, there is no promising
potential for a parallelization of the PC step. Consequently,
RT-VQM switches back to the CPU for all following pro-
cessing steps before executing the PC step (see Figure 4).

The outputs of the PC step are seven parameters for the
linear regression model calculated in the final VQM Model
Calculation (M) step. For the most precise regression model
defined by VQM [26, 16], this requires an addition of seven
weighted values, which is negligible in terms of execution
time. In fact this step is performed so fast, that the mea-
surements of the reference implementation in Section 3 were
omitted due to insignificance compared to the other steps.
Consequently, this last step remains on the CPU.

5. EVALUATION
The evaluation is driven by three research questions: first,

the adherence of RT-VQM to the non-parallel reference ver-
sion of VQM is investigated with respect to precision. In
particular, we quantify the deviation from the reference im-
plementation and investigate the trade-off between perfor-
mance and precision. Second, the performance gain in terms
of throughput and execution time as defined in Section 3 is
measured. Special interest is paid to the question how many
SVC layers can be assessed in real-time. Moreover, we inves-
tigate the suitability of the VQM general model with respect
to the scalability modes of SVC and the hardware-supported
linear interpolation methods along the spatial and temporal
dimension introduced in Section 4.

5.1 Adherence to Reference
First, the adherence of RT-VQM to the reference imple-

mentation is validated. Therefore, the quality measurement
deviations of the reference VQM version and our approach
are compared. For the final M step, seven parameters are
used to calculate a linear regression model. We list the mean,
standard deviation and the maximum of the deviations com-
pared to the reference in Table 2. The values are calcu-
lated using three videos from the LIVE Mobile database [13]
and comparing them to 16 impaired versions from the same
database for three different resolutions. Thus, the results
are based on 144 video comparisons.

The reference VQM version operates with double precision
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(b) Absolute execution time E; category Other (O) represents
parts of the code that could not be assigned clearly. Run time
required for real-time processing is 15s.

Figure 8: Metric distribution of RT-VQM over processing
steps. Results are averaged over 10 runs of a 15s video se-
quence at 30fps. The standard deviation is smaller than 1%
for all results.

floating point representations only. As GPUs are optimized
for single precision calculations and tend to run considerably
faster in this mode of operation, we have implemented the
possibility to switch the RT-VQM implementation to a sin-
gle precision mode. Thus, all floating point operations and
the storing of all intermediate values is handled in single pre-
cision. This allows quantifying the loss of precision between
both modes, i.e., the trade-off of precision and performance.

Notably, RT-VQM produces only slight errors in both
modes. In double precision mode, the maximum devia-
tion from the reference is in the range 2.78 × 10−16 for
the HV LOSS feature. Why this mode shows any differ-
ence at all, could not be clarified entirely. The authors as-
sume that slight differences in the hardware implementation
of the IEEE 754 standard [1] and different numerical algo-
rithms for certain operations (e.g., square roots) could be a
cause. Compared to double precision mode, the deviations
in the single precision mode are higher. Again, the highest
deviation can be observed for the HV LOSS feature. The
maximum total loss of the complete regression model is as
high as 4.44× 10−16/2.19× 10−6 for both modes.

Summing up, the deviations in both modes are negligible,
as they are below 0.1%. Given that VQM quantifies human
visual perception, which is imprecise by nature, it is highly
unlikely that the identified deviations are measurable at all
in a subjective test. Thus, for our objectively estimated
quality of video we accept those negligible deviations and
leverage a single precision mode-based calculation of VQM.

5.2 Runtime Performance Evaluation
As for the reference implementation, a performance eval-

uation is conducted using the throughput (T ) and the abso-



Table 2: Precision of the VQM feature values compared against results from the reference implementation for single and
double precision calculations. For a discussion of the regression model and the involved feature parameters see [16, 26].

Double Precision si loss hv loss hv gain color1 si gain contati color2 total

Mean(error) 2.86× 10−17 2.32× 10−17 2.13× 10−17 0 3.11× 10−17 -3.14× 10−19 0 9.44× 10−17

Std(error) 1.71× 10−17 9.47× 10−17 2.18× 10−17 0 1.24× 10−16 8.42× 10−19 0 1.55× 10−16

Max(error) 6.94× 10−17 -2.78× 10−16 8.33× 10−17 0 3.36× 10−16 -1.95× 10−18 0 4.44× 10−16

Single Precision si loss hv loss hv gain color1 si gain contati color2 total

Mean(error) -5.59× 10−9 1.64× 10−7 -5.14× 10−8 3.56× 10−10 -1.55× 10−8 1.00× 10−10 1.35× 10−9 9.35× 10−8

Std(error) 2.17× 10−8 6.25× 10−7 1.02× 10−7 3.78× 10−8 9.49× 10−8 1.28× 10−9 2.11× 10−9 6.87× 10−7

Max(error) -5.23× 10−8 2.27× 10−6 -2.50× 10−7 1.59× 10−7 2.24× 10−7 3.39× 10−9 6.69× 10−9 2.19× 10−6

Table 3: Comparison of total execution time E and total throughput T for reference VQM implementation and RT-VQM.
The measurements were conducted on 15s video sequences at 30fps.

WSIF WVGA HD720

VQM RT-VQM VQM RT-VQM VQM RT-VQM

Mean (E) [s] 25.14 0.92 39.76 1.36 88.50 2.70
Speedup 27.33 29.23 31.72
Speedup (rel.) 6.83 7.31 7.93

T [MPixel/s] 4.66 127.72 4.63 135.64 4.69 153.6

lute execution time (E) as defined in Section 3. The results
are depicted in Figure 8.

Notably, the throughput results are more equally dis-
tributed across the different processing steps than for the
reference version (see Figure 8a) indicating no clear process-
ing bottleneck anymore. Moreover, the absolute throughput
of all steps is now around 103MPixel/s. As opposed to that
the steps in the reference version only reached a throughput
between 9MPixel/s and 29MPixel/s except for the PC step.

The throughput results are reflected in the absolute exe-
cution time measurements (see Figure 8a): the distribution
of time spent on processing the different steps is more uni-
form than for the reference version. Moreover, the PC step
consumes a larger fraction compared to the other processing
steps. In total, the absolute execution time for processing a
video sequence in HD720 resolution does not consume more
than 2.7s, which is far below the real time border of 15s
playback time for the whole sequence.

A direct comparison of the total execution time and the
reference implementation is listed in Table 3. For that pur-
pose, the mean runtime for both versions is compared. For
three different resolutions, a speedup of RT-VQMranging
from a factor of 27 to 30 can be observed compared to the
reference version. As the reference version is running single-
threaded, we define a relative speedup by dividing the run-
time of the reference version by 4, which is the number of
CPU cores of the measurement system to enable a more fair
comparison. Nevertheless, RT-VQM still outperforms the
reference version by a factor between 6 and 8 depending on
the resolution.

Moreover, the number of completely measurable video
quality layers is evaluated. Notably, the number of pro-
cessed pixels when measuring a whole SVC stream only de-
pends on the resolution and framerate of the highest video
layer and the number of encoded video layers. The reason for
this is that all layers are scaled up to the highest layer with
respect to resolution and framerate by using the hardware
based interpolation method introduced in Section 4 during

the Sampling (S) step.
Results for the number of fully comparable video quality

layers depending on the highest encoded resolution at 30fps
are presented in Table 4. In single precision mode, RT-VQM
enables the complete measurement of between 30 (WSIF)
and 9 (HD720) video quality layers, i.e., the SVC cube shown
in Figure 1 can be assessed entirely in real-time.

Table 4: Number of fully comparable video quality layers
depending on the highest resolution at 30fps in single and
double precision mode in real-time.

WSIF WVGA HD720

Single
Precision

30 20 9

Double
Precision

24 16 7

Finally, the precision/performance trade-off for the three
modes regarding temporal scaling introduced in Sec-
tion 4/Figure 9 are evaluated. A measurement of the com-
plete LIVE mobile video database [13] using 30fps for the
reference video and 15fps for the downscaled video shows
that all three modes do not deviate largely in their resulting
VQM score (Figure 9a). In fact, there are no noteworthy dif-
ferences for scores below 0.8, while above 0.8 the deviation
stays below 5%. Nevertheless, the Feature Duplication mode
shows considerable execution time advantages compared to
the Frame Interpolation and Frame Duplication mode (see
Figure 9b). The reason for this is that the amount of fea-
tures to be processed is much lower than the amount of
frames and pixels that have to be processed for the other
two modes.

5.3 Influence of Quality Dimensions on VQM
The original VQM algorithm was developed and validated

in user studies with respect to quality loss introduced by
block artifacts. However, the scalability modes of SVC in-
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(b) Comparison of the three modes for handling temporal scaling
w.r.t. execution time E. The Frame Duplication mode provides
a considerably better performance than the other modes. The
standard deviation is smaller than 1% for all results.

Figure 9: Comparison of the three modes for handling tem-
poral scaling.

troduce block artifacts when scaling along the quantization
dimension only, while scaling along the spatial dimension
(resolution) for the same display size introduces a loss of
contrast (blur) and scaling along the temporal dimension
may introduce the loss of motion continuity or the occur-
rence of flickering effects. It is not entirely clear whether
VQM is valid with respect to these dimensions of scalabil-
ity. However, evaluating the validity of VQM with respect
to temporal and spatial scalability is difficult due to a lack
of subjective test sets for all three types of impairments.

In order to provide an estimate of the validity of QoE
measurements when scaling quality, the quality loss as mea-
sured by VQM is correlated with Spatial Information (SI)2

and Temporal Information (TI) measurements of all videos
in the LIVE Mobile [13] database. SI and TI are widely used
and well defined measures [5]. Intuitively, the SI measure is
a measure for the amount of spatial detail information con-
tained in a video sequence. Increasing spatial complexity
results in a higher SI measure. Similarly, the TI measure in-
dicates the amount of temporal change in a video sequence
and a higher TI value indicates a more temporally complex
scene. For formal definitions, see [5].

Using these measures, the following hypotheses are con-
structed: (a) An equal reduction of the quantization dimen-
sion results in a higher reduction of the VQM value for se-
quences with a higher SI measure. (b) An equal reduction
in frame rate results in a higher reduction of the VQM value

2Not to be confused with the feature set defined in Section 4.

Table 5: Correlation Coefficients for VQM measurements
and Spatial/Temporal Information

SI TI

Reduction CC SROCC CC SROCC

Resolution 0.36 0.285 0.382 0.345
Bitrate 0.686 0.648 0.482 0.43
Framerate 0.176 0.261 0.785 0.648

for sequences with a higher TI measure. (c) An equal reduc-
tion of resolution results in a higher reduction of the VQM
value for sequences with a higher SI value.

For that purpose, we generate four videos for each se-
quence contained in the LIVE Mobile database [13]. One
video is encoded with maximum quality settings, i.e., a tar-
get bitrate of 1500kBit/s, HD720 resolution and 30fps. Ad-
ditionally, three quality degraded versions are generated by
reducing one of the following parameters: the target bitrate
is set to 250kBit/s to reduce the quantization dimension, the
framerate is set to 15fps to reduce the temporal dimension
by dropping every second frame, and the resolution is re-
duced to WSIF to reduce the spatial dimension. Each of
the four videos is compared to the original version from the
LIVE Mobile database [13] using RT-VQM. By calculating
the pairwise difference between the VQM value of the high
quality version and the quality degraded version, the VQM
loss along each dimension is quantified.

Notably, a correlation larger than 0.6 could only be found
for hypothesis (a) and (b). The correlation value for hy-
pothesis (c) is lower than 0.36 for Pearson Correlation Coef-
ficient (PCC) and Spearman Rank Order Correlation Coeffi-
cient (SROCC) (see Table 5) and the measured VQM loss is
lower than 0.08 when reducing resolution, i.e., comparably
small. This indicates that the VQM model may not react
as desired to spatial scaling. Nevertheless, spatial scaling
induces mostly blurring and loss of edge information, which
are both covered by VQM feature sets. Consequently, a user
study should be conducted to quantify, whether the features
should be re-weighted before applying the model in practice
for quality adaptation along the resolution dimension.

6. CONCLUSIONS
This work proposed an approach to calculate the perceived

video quality using objective metrics in real-time and with
a high correlation to subjective studies. Therefore, the pre-
cise FR-video quality standard VQM was decomposed into
its single sub-algorithms in order to identify steps suitable
for a massive parallelization using GPUs. Based on this ana-
lysis RT-VQM, a highly parallel, GPU supported version of
VQM was developed. Therefore, an efficient feature extrac-
tion, hardware-based interpolation and a high-performance
parallel feature pooling method were introduced. RT-VQM
achieves a speedup of up to 30 times in comparison to the
VQM reference implementation with only negligible devi-
ations in its precision. Our approach was evaluated with
respect to precision, the performance increase, the number
of video representations to be compared in real-time and its
suitability to measure different modes of video adaptation.
The findings show that a precise comparison of up to 9 rep-
resentations up to HD720 resolution at a framerate of 30fps
can be achieved. Moreover, VQM is suitable for quality as-



sessment in the temporal and quality dimension of a video.
RT-VQM enables a number of novel use cases, i.e., the

adaptation of live streams and video conferencing streams
according to user’s perception as well as a more efficient
offline processing of VoD content to assess the QoE loss
between different video representations upfront or during
transmission. Especially the VoD use case proposes interest-
ing opportunities for caching QoE values calculated on-the-
fly during the first transmission. Thus, perception optimized
quality scaling can be offered for the most important, possi-
bly viral fraction of videos on a short time scale, while assess-
ing long-tail content offline when free processing resources
are available, e.g., at night. As a result, video streaming ser-
vices and content distribution networks can provide a bet-
ter QoE per invested transmission bandwidth or minimize
bandwidth per user in a way that minimizes harms to user
perception.
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