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ABSTRACT
In this paper, we present a novel lighting estimation algorithm for 
the scene containing two or more planes. This paper focuses on near 
point light source estimation. We first detect planar markers to 
estimate the poses of the 3D planes in the scene. Then we estimate 
the shading image from the captured image. A near point light 
source lighting model is used to define an objective function for 
light source estimation in this paper. The output of the proposed 
method is the lighting parameters estimated from minimizing the 
objective function. In the experiments, we test the proposed 
algorithm on synthetic data and real dataset. Our experimental 
results show the proposed algorithm outperforms the state-of-the-
art lighting estimation method. Moreover, we develop an 
augmented reality system that includes lighting estimation by using 
the proposed algorithm.  
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1. INTRODUCTION
Recent years have witnessed a rise in the demand of mobile and 
wearable devices (e.g. smart phone, tablet). Augmented Reality 
(AR) has been widely used in conjunction with a mobile device in 
recent years. More and more AR applications have been developed 
to improve our living experiences from many perspectives. 

In these AR applications, it is obvious that delivering a 
visually coherent rendering plays an important role in the field of 
Augmented Reality. Thus, accurate estimation of the illumination 
condition of the scene from the acquired images is very crucial to 
the rendering of 3D virtual models for display with the real image. 
However, relatively little work has been done for the problem of 
estimating near light source. Previous work often focused on shape 
and reflectance estimation (e.g. Oxholm and Nishino [1], Johnson 
and Adelson [2]). These works estimate the object shape and 
reflectance by natural illumination information. Lalonde and 

Matthews [14] is an example of lighting estimation from outdoor 
images. They aim at outdoor lighting and propose a low-
dimensional parametric model that captures outdoor illumination 
conditions.

Nevertheless, there was very few previous works focused on 
lighting estimation for indoor and near light source. Since the 
popularization of Augmented Reality, it is important to estimate the 
near light source and render images for 3D virtual objects with 
plausible illumination. In this paper, we propose a novel lighting 
estimation algorithm which captures near light source information. 
In the experiment, we fuse it with AR system and show the 
estimation result by rendering virtual objects with the estimated 
illumination condition.

In the field of AR, two major problems must be addressed: 3D 
pose estimation and plausible illumination rendering. The main 
focus in this work is the lighting estimation of a near light source. 
For AR, it often requires estimating the illumination conditions (e.g. 
light radiations, positions) for delivering visually coherent 
rendering. Knowledge of the real world lighting plays a significant 
role in the second problem: plausible illumination through lighting 
and shading in AR. In this paper, we focus on estimating the near 
point light source at indoor scene. Figure 1 depicts an example of 
the plausible illumination using the lighting parameter estimated by 
the proposed lighting estimation algorithm.

The flow of the proposed Augmented Reality system is shown 
in Figure 2. Our AR system can be separated into two processes: 
lighting estimation and augmented reality. After capturing an input 
image from a camera, in the lighting estimation process, we execute 
the gradient filtering to recover the shading image of the 
environment. Next, we use the shading image as the input to 
estimate the initial guess of lighting parameters. Then, these 
parameters are optimized by solving a non-linear least squares 
minimization problem. For AR, it first searches the markers from 
the input, and uses these markers to estimate the 3D pose of the 
marker relative to the camera. Then we project the 3D model from 
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Figure 1. The augmented reality system with a plausible 
illumination using our proposed lighting estimation algorithm.



the 3D world coordinate to 2D image coordinate. At same time, 
identifying markers help us extend more applications in AR. 
Finally, we fuse the results of two processes, and output the frame 
which includes virtual contents with plausible illumination 
rendering by the estimated lighting parameters.

The following is the main contribution of this paper. First, we 
propose an image-based approach that faithfully estimates the 
illumination condition of near point light source for indoor scene.
Second, we generalize the original lighting estimation algorithm for 
a 3D plane to 3D scenes containing two or more planes. Finally, we 
present an Augmented Reality system which renders the virtual 
objects with plausible illumination after estimating the illumination 
conditions from real world. The rest of this paper is organized as 

follows. In section 2, some related works on lighting estimation are 
reviewed. In section 3, we present the proposed algorithm based on
a shading model that closely approximates the illumination of 
environment, which is then used in the optimization approach. 
Section 4 shows some experimental results and provides 
quantitative evaluation to demonstrate the performance of the 
proposed method. In the end, some conclusions are drawn in 
section 5

2. RELATED WORKS
In the Augmented Reality system, visually coherent rendering 
plays a crucial role to render impressive results. One challenge in 
achieving this is to obtain correct lighting condition. In the 
following, there are five primary research directions related to 
lighting estimation problem.

2.1 Lighting Estimation from Light Probes
Typical lighting estimation methods often used a light probe to 
obverse the illumination of the environment, since spherical probes 
have a property of simplifying the estimation problem. Debevec [5]
were among the first to estimate lighting by using a sphere. They 
capture the lighting environment map by photographing a mirror 

sphere, and relight where all incoming distant illumination was 
modeled. It is also common to assume that the light source is a point 
so that reducing the problem to that of estimating the 3D point 
position. Powell et al. [6] and Takai et al. [7] calibrated the near 
point light source by capturing images with two spheres. They 
analyze the incoming and outgoing angles of light on a sphere, 
respectively, and find the position of a point light source by mixing 
the incoming light vector. Ackermann et al. [4] presented a new 
method for accurately modeling reflections on a sphere. Others, 
such as Kato et al. [8], Wong et al. [9], and Wu and Tang [15], also 
used reflective spheres to recover light directions and camera poses. 
However, the input images used by this approach have to include 
the light probes. It may be less intuitive and convenient to be used 
for the Augmented Reality system.

2.2 Lighting Estimation from Shadows
Another approach to estimate light sources is to observe the 
shadows of the objects in an image. The principle of this idea is 
based on the geometry of the shadow caster and correct 
segmentation from the shadows and background. The work of 
Haller et al. [12] is an example of using the geometry with known 
objects to analyze shadows. Wang and Samaras [13] presented a 
method for estimating multiple directional lights, from known 
geometry and Lambertian reflectance. However, this approach can 
only be applied to static images and necessarily know the geometry 
information of objects.

2.3 Lighting Estimation from Outdoor 
Images
For outdoor scene, the representation of illumination environment 
can be modeled as the fusion with sun and sky. Lalonde and 
Matthews [14] introduced a practical low-dimensional parametric 
model that accurately captures outdoor lighting. They regard sun 
and sky as the directional light and ambient light, respectively, and 
propose a Hemispherical lighting model to model it. Thus, the 
results can be obtained from using this model to derive priors on 
the likely illumination conditions of a scene. The directional 
lighting model of this paper is inspired by the work in [14], which 
will be provided in section 3.

2.4 Lighting Estimation from HDR Images
Meilland et al. [21] used an RGB-D camera as a dynamic light-field 
sensor, based on a dense real-time 3D tracking and mapping 
approach, which avoids the need for a light probe or the observation 
of reflective surfaces. The radiance map of the scene is derived by 
fusing a stream of low dynamic range images (LDR) into an HDR 
image. Unfortunately, fish-eye HDR cameras are expensive and not 
commonly available.

2.5 Lighting Estimation from Arbitrary 
Geometry
Pilet et al. [16] presented a fully automated approach for geometric 
and photometric calibration by waving an arbitrary textured planar 
pattern in front of the cameras. In this work, the light probe is 
constrained to a planar surface. They applied the light map to model 
real illumination conditions. The surface albedo of the planar 
pattern is necessarily known before lighting calibration.

Estimating the illumination from a single image of an arbitrary 
object is a challenging task. Lombardi and Nishino [18] proposed a 
probabilistic formulation that seamlessly incorporates such 
constraints as priors to estimate the reflectance and illumination. 
Without any knowledge of the 3D geometry or reflectance, Chen et 
al. [17] decompose a single image to the intrinsic component 

Figure 2. The system flow chart of the proposed AR system.



including shading image and reflectance image. Then the radiance 
map of the scene is inferred based on the scene geometry and 
intrinsic components. 

In recent years, Park et al. [20] presented an algorithm for 
calibrating a near point light source rigidly attached to a camera 
using a single plane. They first recover shading images by filtering 
high frequency gradients in the input image that correspond to 
albedo edges. The position of light source can be inferred by mixing 
the bilateral symmetry axis detected from the shading. Nevertheless, 
this work is concentrated on calibrating the light source rigidly 
attached to a camera. The angle between the dominant axis of the 
light source and camera direction may not be too great. 

Moreover, Gruber et al. [19] tried to use RGB-D camera to 
estimate dynamically changing environment lighting from an 
unknown scene. By using the RGBD camera, the information of 
surface normal can be used to compute the distant light field easily. 
The final result of rendering a surface point can be obtained by 
solving a linear system. However, besides RGB data, the inputs of 
this work also include depth image. In contrast, our work only 
utilizes the RGB information and does not require any extra device 

3. PROPOSED METHOD 
As mentioned in section 1, our augmented reality system can be 
divided into two major components: lighting estimation and 
augmented reality process. In this section, we introduce our shading
model for lighting estimation, and then describe our method for 
estimating lighting conditions of a near point light source using 
several markers. Finally, we also give the augmented reality 
process which provides image rendering with a plausible 
illumination by applying the lighting conditions estimated from the 
scene by using the proposed algorithm. 

3.1 Shading Model 
We propose a novel lighting estimation method by using planar 
markers. Our goal is to derive the lighting conditions in real scene
from our proposed method. In this paper, we assume that the 
observed scenes are Lambertian surfaces and they are illuminated 
by a nearby, isotropic point light source. Inspired by the work of 
Lalonde and Matthews [14], we employ a simple directional 
lighting model to be described as follows. The intensity at the pixel ��� �� in the image � is given by ���� �� � ���� ���� � ���� �� � ���� ���� �����           (1) 

where ���� ��  and ���� ��  are the diffuse albedo and ambient 
occlusion at pixel ��� �� respectively. To simplify the problem, we 
assume the ambient occlusion o can be ignored in our method. In 
addition, the albedo � can also be eliminated by replacing the input 
image by the shading image recovered in section 3.2.1. As a result, 
the shading model in our method can be modified to as follows:  ���� �� � � � ���� ���� �����                        (2) 

where ������ �� � �� � ���� ��.                            (3) 

In Eq. (2),  a and d are parameters in the illumination model.  For a 
single plane, each pixel ��� �� has the same surface normal n and 
light direction ���� ��. The light direction ���� �� for the 3D point ���� ���corresponding to the image pixel (x,y) is along the 3D 
vector from the its 3D position t ���� �� to the 3D near light source 
position � l , both in world coordinates. Here, ������  denotes the 
(strictly positive) dot product representing the foreshortening term. 
The unknowns in Eq. (2) and Eq. (3) are the lighting parameters 

� � ��� �� �� ���, which consists of the ambient and diffuse light 
intensity, surface normal and the light direction. 

To summarize, the goal of our proposed method is to find a 
pair of reasonable parameters �  to express the real illumination 
environment. We will present the proposed lighting estimation 
method in the next section. 

3.2 Lighting Estimation Algorithm 
We now describe our method for lighting estimation by using 
planar markers. Consider that most of the real scenes are not always 
a single plane. Algorithm 1 summarizes the proposed method. 
Intuitively, by using planar markers, we can handle the 3D scene 
containing two or more planes in an image. More details will be 
described in this section. In addition, to simplify our problem, we 
use the gradient filtering technique to obtain the shading image 
from the input image. Therefore, by replacing the input image with 
shading image in our lighting estimation optimization process, we 
can eliminate the diffuse albedo � from our shading model Eq. (1). 

Algorithm 1. Lighting estimation method 
Input: An image � to be estimated, the corners of each marker 
in image coordinates �. 
Output: the intensity of ambient � and diffuse �, the set of the
surface normal � and light source position ��. 
1: Estimate the shading image � from the input image � by 

minimizing the Eq. (4). 
2: Segment plane region �  using the markers in the input 

image �. 
   for each plane � in the set of plane region � 
3:     �� � find the correspondences from � 
4:     �� � compute the homography matrix by ��
      for each pixel � in the plane � 
5:       ���� �  Transform �  from image coordinates to 

corresponding marker coordinates by �� 
         if � � � 

6:          Convert ���� to the major marker coordinates ���� 
       end if 
    end for 

   end for 
7: Estimate the lighting parameters � � ��� �� �� ���  by 

minimizing the error function Eq. (10) 

 

3.2.1 Shading Image Estimation 
Since we attempt to eliminate the effect of the diffuse albedo � in 
our shading model, given in Eq. (1), and to simplify the problem, 
we extract the shading image from the input image using gradient 
filtering. Inspired by the work in Park et al. [20], we remove high 
frequency gradients in the input image that correspond to albedo 
edges. The shading image �� can be recovered by minimizing the 
following objective function. �� � ������� � ������� � � ������ ��� � ������ � ��������        (4) 



where ���� � �������������� � ����������������                            (5)

where ���� is gradient clipping function defined in Eq. (5) and � is 
the input image. In Eq. (4), the first term in the objective function 
encourages the gradients of � to match the clipped gradients of � in 
Eq. (4). On the other hand, the second term makes the intensity of 
both images as similar as possible. The weight � � ����� controls 
the second term as follows.�� � � � ��� � � � ���,                          (6)

where � is a� � �Gaussian kernel, and � �� is the convolution 
operator. ��� � � � ���, the high pass filter response on �, implies 
that the flat pixels have lower values because they have less 
influences on Gaussian kernel. In contrast, the edge pixels would 
have higher values, so it would has less pixel weight on the edge 
pixels. It encourages the strong gradients in the albedo map to be 
eliminated in the recovered shading image. The constant � and �
are the weight of the second term and the gradient clipping 
threshold for � � �������, respectively. An example of a recovered 
shading image is shown in Figure 3.

3.2.2 Plane Region Segmentation
For most of the situations in real scene, the input image does not 
always include only a single plane. Thus, we aim to handle the 
image of a 3D scene containing two or more planes. An intuitive 
idea is to give a different surface normal for each pixel on a 
different plane. Since we stick markers on each plane, the plane 
equation can be obtained by the augmented reality system (section 
3.3.1). Here, we use the technique of augmented reality to segment 
the input image. In the flow of AR, the projection matrix of the 
transformation from 3D coordinate to 2D coordinate is computed 
in the procedure of camera pose estimation. We just render a large 
rectangle on the plane of each marker respectively. As shown in 
Figure 4, a reasonably good image segmentation for plane regions 
can be obtained by projecting these rectangles from world 
coordinates to image coordinates by the projection matrix estimated 
from camera pose estimation.

3.2.3 Coordinate Transformation
In this section, we focus on transforming the image pixels from 
image coordinates to world coordinates. Intuitively, by square 
markers, we can use homography transformation to solve this 
problem. Figure 5 shows that the pixels are transformed from image 

coordinates to marker coordinates. By searching four corners of the 
square marker, we can compute the homography matrix for each 
marker. Each homography matrix �� corresponds to a plane region � � � which is segmented based on the method described in section 
3.2.2. With the homography, we transform each pixel � � �� from 
image coordinates to the corresponding marker coordinates.���������� � � �� ������ � � ��� � ���� �������                     (7)

����� � ���������� ��                                       (8)

where, ����� is the 3D position represented in the coordinates of the 
s-th plane (marker), and � is the scale factor of homogenous 
coordinates. Note that the z value in marker coordinates ��� is 
assigned by the plane equation with the s-th surface normal �� ������ . After transforming to the marker coordinates, we select a 

marker as the major marker, whose coordinates is regarded as the 
world coordinates. However, it should be converted to the 

coordinates of the major marker for the pixels which represent in 
the coordinates of other markers. Here, we respectively compute 
the rotation matrix ���� between the surface normal of the � th 
marker �� and the surface normal of the major marker �� . The 
transformation can be formulated as follows.����� � ��������� � �����                             (9)

where, ����� is the �th pixel represented in the coordinate of the �-th 
marker (����� � � is the major marker) , and ���� is the translation 
parameter adjusting the offset from the origin. Therefore, we can 
use Eq. (9) to transform the pixels from other marker coordinates 
to the coordinates of the major marker (world coordinates). There 
is an example shown in Figure 6. In this example, there are two 
markers in the input image, the image pixels can be separated into 
two plane regions, i.e. ��������� . Intuitively, we can assign the 
initial guesses of the surface normal �� � �������� �� � ��� �����. 
We choose the marker 1 as the major marker whose coordinate is 
regarded as the world coordinate. For the pixels � � �� , their 
positions in the world coordinate can just assign the z value to zero. 
In contrast, the pixels � � �� should be transformed from marker 2 
coordinates to marker 1 coordinates. By Eq. (9), we rotate the pixels � � �� into the plane of marker 1, and translate them to a proper 
position. In summary, to make all the pixels represented in the same 
world coordinate, we first need to transform the pixels from image 
coordinate to the coordinate of its corresponding marker by Eq. (7) 

Figure 3. (a) An input image. (b) The corresponding shading 
image computed from the gradient of the input image.

Figure 4. (a) An input image overlaid with the boundary of 
the two estimated planes. (b) Rendering of the two estimated 
planes in our AR system.



and Eq. (8). Next, by Eq. (9), we convert these pixels from their 
original coordinates to world coordinates.

3.2.4 Lighting Parameters Optimization

We now describe the final step of our proposed lighting estimation 
method. This step is to provide the proper lighting parameters for 
generating a plausible illumination condition in the Augmented 
Reality system (section 3.3). As a result, according to our modified 
shading model in Eq. (2), we define the following objective 
function: ���� � � � ��� � � � �������������������������� �           (10)

where �� � �� � ���                                (11)

and �� � �� is the 3D point represented in the world coordinate 
which is transformed from the pixel � � ��� �� in section 3.2.3. The 
unknown parameters � � ��� ���� ��� would be estimated by 
minimizing the error function Eq. (10). � � ����� � �� is the set of 
the surface normal of all the regions � � �.

We estimate the lighting parameter � by minimizing Eq. (10). 
This equation can be regarded as a nonlinear least square problem. 
Here, we employ the COBYLA (Constrained Optimization BY 
Linear Approximations) algorithm [25] to minimize it. In our 
implementation, we use the open source library NLopt [22] to 
optimize it. This procedure is repeated until convergence, which is 
obtained when the mean difference in errors between two 
subsequent iterations is less than 0.01%. Typically, the 
minimization procedure converges within 2~3 seconds for a 
640x480 image with an off-the-shelf PC.

3.3 Augmented Reality System
In this section, we describe an augmented reality system that 
includes the proposed lighting estimation to achieve illumination-
coherent rendering of virtual objects based on the ARToolkit 
framework [23]. In this AR system, we relight the illumination on 
the virtual objects by using the lighting parameters estimated from 

section 3.2. We developed this system based on the ARToolkit 
framework [23]. However, we improve the camera pose estimation
by using the additional feature point correspondences obtained by
extracting the SURF interest points [24] from the marker’s pattern 
and the input image, respectively. From the SURF interest point 
detection, we obtain the 3D-to-2D point correspondences for 
camera pose estimation. The following is an overview of our AR 
system. First, the marker corners are extracted from the input image, 
and then we compute the point correspondences for camera pose 
estimation by SURF matching and refine them from the marker 
corners extracted from the first step. Next, we estimate the 3D 
camera pose from the point correspondences. Finally, virtual 
objects are rendered according to the estimated 3D pose with the 
illumination condition estimated by the proposed algorithm 
described in section 3.2.

3.3.1 Searching for Markers and Finding Point 
Correspondences
In the AR system, we first search the markers in the input image 
and extract their four corners for camera pose estimation. To make 
the searching robust, we use the square marker surrounded with a 
black rectangle. Some examples of the markers used in our 
experiments are shown in Figure 7. The pattern in the middle of the 
rectangle can be replaced arbitrarily.

When the camera captures an image, the first step in our 
system is binarizing the image with a threshold �. The region of the 
black rectangle would stand out in the binary image. Therefore, we 
can find the connected components and extract the marker edges 
and corners from the captured image. The marker corners will be 
used in conjunction with the interest points extracted from the 
marker region to estimate the camera pose.

Figure 7. Some examples of the square marker with a black 
rectangle.

Figure 6. An example of transforming a point from marker 
coordinate to world coordinate. We assign marker 1 as the 
major marker, so the pixels which locate in the plane region �� should be transformed to world coordinates by Eq. (9).

Figure 5. The relationship between marker coordinates and 
image coordinates observed from the screen. Here, (Xi,Yi) are 
the x axis and y axis respectively in image coordinates. 
Likewise, (Xm, Ym) are the axes in marker coordinates. We 
can transform the pixels by the homography computed from 
four points of the marker’s corner found in the input image



For AR applications, the image features to be used for 
matching should provide robust matching across a substantial range 
of changes in 3D viewpoints, noise levels and illumination 
conditions. In this paper, we use the SURF method [24] to detect 
the interest points to establish point correspondences between the 
marker pattern and the input image as depicted in Figure 8.

After extracting the SURF feature points, we match these 
features to find point correspondences between the input and 
marker pattern. Each pixel in marker pattern is regarded as a point 
represented in 3D world coordinates. As a result, after obtaining the 
3D-to-2D point correspondences with SURF, we utilize these 
correspondences to estimate the camera pose in the next section.

3.3.2 Camera Pose Estimation
It is essential to find the relationship between the marker coordinate 
and the image coordinate, which is shown on screen, in an AR 
system. In other words, given the camera intrinsic parameters, we 
estimate the 3D pose of the marker with respect to the camera from 
the 3D-to-2D point correspondences by minimizing the re-
projection error given by������ � ��������� � �����                         (12)

where � is the pre-calibrated camera matrix, and R and t are the 
rotation matrix and translation vector, respectively. Here, we apply 
the Levenberg-Marquardt optimization algorithm to minimize the 
re-projection error function. Subsequently, we align virtual objects 
with markers by using the estimated 3D pose. Finally, the virtual 
objects are rendered with the 3D pose and lighting condition 
estimated from the real image.

4. EXPERIMENTAL RESULTS
In this section, we present some experimental results by using the 
proposed lighting estimation method. We evaluate our method with 
both synthetic and real data. All of our experiments were performed 
on a PC equipped with Intel Core i7-4770 3.4 GHz CPU and 16GB 
RAM.

4.1 Evaluation with Synthetic Images
In this experiment, we generated 20 synthetic images under 
different lighting conditions by OpenGL. These images were 
rendered at 600×600 resolution by using a Blinn-Phong model [3]
to generate the illumination effect in the virtual scene. We rendered 
two or more large rectangles as the surface we observed by using 
different lighting parameters.

We first present the results of the error function in Eq. (10). 
The goal of this experiment is to verify if the proposed error 
function is converged to the optimal solution. We set different 
initial solutions and optimize it. The estimated lighting parameters � � ��� �� �� ��� are compared with the ground truth. Figure 9 
shows that the results of the lighting estimation with different initial 
guesses. Here, we use the Mean Absolute Error (MAE) as one of 
the accuracy metrics. We generate the synthetic images using the 
estimated lighting parameters, and compare them to the shading 
image recovered from the input image. The result of comparison is 
shown in Figure 9(a). We can see that the differences in the MAE 
are not large for different initial guesses. It implies that the 
proposed method would optimize the lighting parameters to almost 
the same solution. Figure 9(b) compares the estimated ambient a 
and diffuse d intensity which lie in the range [0,1]. Most errors of 
the diffuse intensity are lower than ambient intensity. Figure 9(c)
shows the errors in the estimated surface normal N for different 
initial guesses of lighting parameters. The errors of the estimated 
light source positions are shown in Figure 9(d). It roughly has an 

upward trend while increasing the deviation to the ground truth in 
the initial guess.

Our second experiment is the comparison of the lighting 
estimation accuracy for the single-plane method and the multi-
plane method. The single-plane method assumes all pixels in the 
image lying on a single plane and makes their estimated surface 
normal N be the same. In contrast, the multi-plane method 
segments the plane regions s�S in the input image by using placing 
markers on all of the planes in AR (section 3.2.2). The pixel in the 
plane region s has the surface normal N_s. We estimate each 
surface normal N_s by minimizing the function in Eq. (10). In this 
experiment, we adjust different light source positions of the ground
truth and assign them to a pair of random ambient and diffuse 
intensity. 

Figure 10 shows the results of the comparison with these two 
methods. For the visual viewpoint, in spite of the MAE of multi-
plane method is slightly higher than the one of single plane method, 
as shown in Figure 10(a), there are a significant improvement for 
the error of the light source position shown in Figure 10(b). 
Moreover, the intensity errors of these two methods are the same 
roughly. Some example are shown in Figure 11. For inputs on the 
first row, the MAE of column (c) and (d) are 11.78 and 11.60, 
respectively. For inputs on the second row, the MAE of column (c)
and (d) are 11.68 and 17.19, respectively. We can see that the multi-
plane method can model the lighting condition more accurately.

Figure 9. The results of lighting estimation with different 
initial guesses. Note that x-axis in all figures denotes the 
value of initial guess deviated from the ground truth.

Figure 8. The interest points extracted by using SURF 
detector [24]: the left image is the marker pattern, and the right 
image is an input image captured by a camera.



4.2 Evaluation on Real Datasets
For the real data, we test the proposed lighting estimation algorithm 
on the datasets released from Park et al. [20]. There are two datasets 
with 42 images and 20 images of whiteboards captured in two 
different rooms. The first dataset CAMERA-LED was captured 
using a bright Cree XM-L LED rigidly attached to the top of a 
point-and-shoot camera (Panasonic DMC-LX5). The second 
dataset SLR-FLASH was captured with a Canon Mark III-1D 
camera with an auxiliary flash.

Table 1 shows the estimation results on the CAMERA-LED and 
SLR-FLASH datasets. The proposed method is compared with 
Park et al.’s work by using MAE as the accuracy metric. The MAE 
of our proposed method in CAMERA-LED dataset is 6.77 which is 
lower than 8.97, the result of Park et al. If we set the initial guess 
for each image, the MAE in this dataset can be decreased into 5.61. 
For another case SLR-FLASH, the result of our proposed method 
is 6.76, which is much lower than the value 15.35 produced by Park 
et al. [20]. While the work by Park et al. suffered from the case that 
the flash violates the assumption of a point light source, our 
proposed method is not affected by this case. The best result of our 
proposed method in this dataset is 5.11. There is an example shown 
in Figure 12.

Furthermore, we also test our method on real scenes 
containing two or more planes. Figure 13 depicts some estimation 
results. However, because of the evaluation with MAE, we have to 
make the camera pose of both images be the same. Therefore, we 
stick the markers close to each other for simplifying the 
implementation of the procedure which renders the image using the 
estimated lighting parameters. In this experiment, we test 20 
images captured in different scenes containing two or three planes. 
The average MAE is 24.81. Even though the MAE is higher in these 
cases, we can obtain reasonable light position estimation by using 
the proposed method.

In Figure 14, we depict an example of the AR system with the 
virtual 3D objects rendered with the estimated illumination 
parameters by using the proposed algorithm and imposed into the 
original image.

5. CONCLUSION
In summary, we proposed a novel lighting estimation method from 
a single image of 3D planes. To improve the performance for the 
case of the images containing two or more planes, we utilize the 
planar markers to estimate the simple layout of the 3D scene easily. 
The estimation of the lighting parameters is accomplished by 
minimizing the error function derived in this work. In our 
experimental evaluation, we compare the proposed algorithm with 

the method by Park et al. [20] and our estimation results are 
considerably better than those of the previous method. Furthermore, 
we developed an augmented reality system that renders virtual 
objects with plausible illumination by using the lighting parameters 
estimated by the proposed algorithm from the input image. The 
proposed lighting estimation algorithm can provide improved 
accuracy by jointly optimizing all model parameters in an 
optimization framework.

Table 1. The MAE comparison between Park et al.’s work [20]
and our proposed method. In the second row, we fix the initial 
guess to [0.01, 0.3, 0, 0, 30]. In the third row, we use the manually
selected initial guess.

Figure 10. The errors in the lighting estimation with the multi-
plane and single-plane methods. Note that x-axis in all figures
denotes the distance between the center of world coordinates and 
the light position of the ground truth.

Figure 12. An example of the result of our proposed 
method in CAMERA-LED dataset. The top left image is the 
input image. The top right image is the shading image 
recovered from the input image. The bottom image is the 
shading image recovered from the rendered image using the 
estimated light parameters. Image contrast is stretched for 
better visualization.



(a)

(b)                                                   (c)
Figure 14. An AR example with the lighting condition of the scene 
estimated by the proposed algorithm: (a) original image, (b) and (c) 
virtual 3D models rendered with the estimated lighting condition 
and imposed into the original image.

Figure 11. Some examples in the comparison for the two methods. Column (a) is the input synthetic image. Column (b) is the shading 
image recovered from the input image. Column (c) and (d) are the shading image recovered from the rendered image using estimated 
lighting parameters by the multi-plane method and the single-plane method, respectively.

Figure 13. Evaluation for the scene containing two planes: 
(a) input image, (b) rendered image using the estimated 
lighting parameters, (c) shading image recovered from the 
input image, (d) shading image recovered from (b).
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