
Data-independent sequencing with the Timing Object

A JavaScript Sequencer for single-device and multi-device Web media.
∗

Ingar M. Arntzen
Norut Northern Research Institute

Tromsø, Norway
ingar@norut.no

Nj̊al T. Borch
Norut Northern Research Institute

Tromsø, Norway
njaal@norut.no

ABSTRACT
Media players and frameworks all depend on the ability
to produce correctly timed audiovisual effects. More for-
mally, sequencing is the process of translating timed data
into correctly timed presentation. Though sequencing logic
is a central part of all multimedia applications, it tends to
be tightly integrated with specific media formats, authoring
models, timing/control primitives and/or predefined UI el-
ements. In this paper, we present the Sequencer, a generic
sequencing tool cleanly separated from data, timing/control
and UI. Data-independent sequencing implies broad utility
as well as simple integration of different data types and de-
livery methods in multimedia applications. UI-independent
sequencing simplifies integration of new data types into vi-
sual and interactive components. Integration with an exter-
nal timing object [7] ensures that media components based
on the Sequencer may trivially be synchronized and remote
controlled, both in single-page media presentations as well
as global, multi-device media applications [5, 6, 7, 16]. A
JavaScript implementation for the Sequencer is provided
based on setTimeout, ensuring precise timing and reduced
energy consumption. The implementation is open sourced
as part of timingsrc [2, 3], a new programming model for
precisely timed Web applications. The timing object and
the Sequencer are proposed for standardization by the W3C
Multi-device Timing Community Group [20].

CCS Concepts
•Information systems→Multimedia content creation;
•Software and its engineering → Organizing princi-
ples for web applications; Abstraction, modeling and
modularity;

∗This research is funded in part by MediaScape (EU, FP7-
ICT-2013-10, grant agreement 610404).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10-13, 2016, Klagenfurt, Austria
c© 2016 ACM. ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910614

Keywords
sequencing, web, timed data, timing object, timed visual-
ization, multimedia, media synchronization, multi-device,
distributed, intra-destination media synchronization, inter-
destination media synchronization

1. INTRODUCTION
Multimedia frameworks are always built around the idea

of organizing and playing back media relative to some time-
line. For continuous media, audio and video frames are laid
out back-to-back, usually filling the entire timeline. For dis-
crete media, such as timed subtitles or timed comments, the
distribution (along the timeline) may often be more non-
uniform and possibly sparse. In this paper we focus exclu-
sively on the sequencing of discretely timed media - or more
generally - timed data. Sequencing here refers the process
of translating timed data (playlist, track, script, log, time-
series, score, etc.) into correctly timed execution (playback,
visualization, operation etc.).

Timed Web applications usually achieve timed behavior
either by adopting an existing multimedia framework, by
using text track support of HTML5 media elements, or by
building custom solutions in JavaScript. Unfortunately, these
options all have limitations. Advanced frameworks tend to
dictate media formats, authoring model, timing model, con-
trol primitives, and possibly UI. In addition, they do not
always integrate well with other frameworks or media sys-
tems. Text tracks provide a simple, programmatic mecha-
nism for sequencing, but dependence on the HTML5 media
element is problematic, particularly if the presentation lacks
an audio/video component, or aims to switch dynamically
between multiple media elements. Custom sequencing solu-
tions imply the overhead of reinventing common functional-
ity, and often lead to shortcut solutions, bugs and limited
reusability.

Instead, we advocate a programming model where timing
and sequencing functionality are made available as indepen-
dent, generic programming tools, applicable across applica-
tion domains. The timing object [5, 7] is the fundamental
building block of this programming model, defining a unify-
ing foundation for timing, synchronization and control. This
paper presents the Sequencer, a generic sequencing tool as
an additional building block for timed media applications.

The main design goal has been to provide a Sequencer that
is data-independent and UI-independent. Data-independence
addresses the coexistence and integration of diverse data
types, and UI-independence simplifies integration of new
data types into visual and interactive components. With

timing and sequencing available as independent program-
ming tools, there are no longer any restrictions with respect
to delivery methods, data types and data sources. Sequenc-
ing tools may also be used to implement correctly timed
data delivery (e.g. timed pre-fetching). Support for dy-
namic sequencing allows dynamic data sources to be used
without introducing any additional complexity for the pro-
grammer. Finally, the timing object supports distributed
timing through Shared Motion [5, 6, 16]. In short, this
opens up multi-device sequencing to any connected Web
agent, independent of data format, delivery mechanism or
UI framework. Furthermore, this approach extends to any
IP-connected device or process, provided only that timing
and sequencing functions described in this paper have been
made available in native code.

The scope of this paper is limited to sequencing in appli-
cation level JavaScript, so precision beyond millisecond is
out of scope. The Sequencer is also a quite simple concept,
limited to sequencing of timed data defined by points and
intervals on a timeline. More sophisticated sequencing tools
may be built on top. A JavaScript Sequencer implementa-
tion is open sourced on GitHub [2, 3]. It is functionally cor-
rect, complete, precise, efficient, and ready for professional
usage.

2. RELATED WORK
The concept of sequencing has a long history, including

popular mechanical instruments such as music boxes and
barrel organs, often driven manually by a crank. Based on
this heritage, a variety of software sequencers have been de-
veloped, particularly within the MIDI [15] framework. Such
sequencers tend to be full featured entities, encapsulating
aspects of recording, representation, storage, playback and
control. In this paper, the term sequencer is interpreted
more narrowly;

sequencer : logic that translates timed data into
correctly timed execution.

2.1 Polling versus timeouts
Poll-based sequencers base their operation on repeated

comparison between timing source and timed data. For in-
stance, text tracks [24] are evaluated repeatedly as part of
the main processing loop in HTML5 media elements [28].
MIDI sequencers are driven by periodic clock pulses. Sim-
ilarly, in Flash, Silverlight or Popcorn.js [1, 14, 17], exe-
cution of animations and media cue points are commonly
based on the timeupdate event from the media player, or
other fixed frequency timers (renderEvent, requestAnima-
tionFrame). Unfortunately, the precision of poll-based se-
quencers is always limited by the polling frequency (e.g.
4Hz in HTML5 media). Excessive polling may improve this,
but at the cost of increased energy consumption, which, in
the Web context may ultimately lead to battery drainage
in mobile devices and lagging user interfaces. Instead, the
Sequencer is driven by setTimeout, making it both precise
and energy efficient, particularly for timed data sparsely dis-
tributed along the timeline.

2.2 Points and intervals
Basic timing mechanisms such as timed cue points in Flash

and Silverlight essentially provide callbacks at specific mo-
ments in time, in reference to playback of a timing source.

Such mechanisms typically work exclusively on points on
the timeline, not intervals. For instance, a set-top-box may
trigger a commercial on a secondary device, at the correct
moment during playback of a TV show. With point-based
sequencing the management of cue duration (if applicable)
is left to the programmer. In contrast, Sequencers based on
intervals distinguish between entering or leaving intervals.
For example, both text tracks [24] and the Sequencer emit
enter and exit events. Additionally, the Sequencer provides
specific support for singular points, and maintains a set of
currently active intervals.

2.3 Playback, time-shifting and control
Sequencing mechanisms also differ with regards to prop-

erties of their timing source. Many sequencing mechanisms
are based on an internal timing source, i.e. the system clock
or other monotonically increasing counters. For instance,
WebAudio [29] schedules audio samples based on a mono-
tonic clock defined by the audio subsystem. If the timing
source supports temporal control, e.g. time-shifting or rate-
changes, sequencing logic must be strengthened accordingly.
The HTML5 media clock supports modification of current-
Time, pause/play, as well as adjustments to playback rate,
and the sequencing of text tracks should always be consis-
tent. Interestingly, text track sequencing emits events only
during playback, not after time-shifting while media play-
back is paused [24]. We regard this as a weakness in the
standard as additional code must be written to handle this
rather typical usage. The Sequencer has full support for the
more precise and expressive timing model of the timing ob-
ject. This includes unrestricted changes to position, velocity
and even acceleration.

2.4 Playlist sequencing
Playlist-based sequencing is popular in linear presenta-

tions. A playlist is typically defined as an ordered list of
objects with start time and duration. Objects may be organ-
ised back-to-back on the timeline, or gaps may be allowed.
For instance, the BBC recently open sourced a video com-
positor [21] for dynamic playback of HTML5 videos (and
more), as part of their object-based media initiative [11]. In
principle, sequencing a track of timed video URL’s is not
very different from sequencing a track of timed subtitles.
In practise though, HTML5 videos are not as lightweight
as subtitles, and will require just-in-time prefetching and
synchronization in order to produce a seamless viewing ex-
perience [8, 9, 13]. The Sequencer supports back-to-back
intervals, gaps between, or overlapping intervals. It may
also be used to ensure timed prefetching.

2.5 Relative timing
Sequencing in SMIL [27, 31] is based on a graph represen-

tation of timing relations between objects. For instance, the
playback of sibling objects in the graph may be arranged
sequentially (seq) or in parallel (par). However, at some
point relative timing statements (between objects) must be
compiled into absolute timing statements. This may occur
during initialization, or dynamically during playback. For
instance, in SMIL the concept of indeterminate timing al-
lows the timing of an object to be specified by user input
during playback, possibly affecting the timing of other ob-
jects in the graph.

Currently, the Sequencer has no particular support for

relative timing. Points and intervals are independent and
defined with absolute timing references relative to the tim-
ing object. However, this only means that compilation from
relative to absolute timing must be performed by the ap-
plication programmer, as part of parsing and registering
application-specific timed data. As the Sequencer supports
modifications of points and intervals at any time, this com-
pilation may occur at load or during playback in response
to changes in the data model.

That said, improved support for data models with relative
timing could be layered on top of the Sequencer, integrated
into it, or there could be other types of Sequencers that
provide specializations in this regard. At this point though
we aim to keep the Sequencer concept as simple and generic
as possible, emphasising its role as basic building block.

2.6 Time containers and looping
The SMIL authoring model also supports time containers

and looping playback for groups of objects. These features
are out of scope for the Sequencer itself, as the Sequencer
and its timing object correspond to a single time container.
However, similar effects may be achieved by exploiting the
flexibility of the timingsrc programming model [2, 3] (of
which the Sequencer is a central part). For example, dif-
ferent timing containers correspond to multiple Sequencer
instances combined with different timing objects or timing
converters (e.g. SkewConverter and LoopConverter).

2.7 Data formats
There is often a tight integration between data formats

and sequencing logic. The text track mechanism of HTML5
works on JavaScript objects, but specifies predefined struc-
ture and types for cues. For instance, text tracks support the
WebVTT format [30]. In MIDI, timed musical commands
are stored in the Standard MIDI File (SMF) format. In
Flash, the proprietary file format ShockWave Flash (SWF)
maps graphical commands and media objects to frame num-
bers, durations and scene coordinates. MPEG-4 [18] adds
support for synchronization and composition of multiple me-
dia streams, including discrete media such as graphical ob-
jects (2D and 3D). In particular, the MPEG-4 Systems part
[19] defines an architecture for media clients (terminals) that
integrates media formats, delivery methods, temporal and
spacial composition, interaction and rendering. In SMIL,
object references, timing intervals (start, end), timing rela-
tions (pre, seq), layout relations as well as interactivity are
all tightly coupled in declarative XML. In particular, the
tight coupling of timed data and layout is limiting. This is-
sue is adressed by the Ambulant SMIL player [10, 22] which
introduces abstract factory functions for data and render-
ing, thereby decoupling core player functionality from pro-
prietary data formats and data sources. The SMIL State [12]
extension deals with the same issue, simplifying the integra-
tion with custom data sources, through the concept of shared
variables.

In contrast, the Sequencer uses unique keys to separate se-
quencing logic entirely from data model and delivery meth-
ods. Application logic extracts intervals and keys from the
data model, and reacts to correctly timed event callbacks
from the Sequencer. This way, timed data from different
data sources may be rendered together, without introducing
any restrictions on data formats or delivery methods.

2.8 UI integration
Sequencing logic also tends to be integrated with prede-

fined UI elements. For instance, most Web players, from
simple slide show viewers to full fledged multimedia players,
define a single rectangular screen area for visual presenta-
tion and built-in controls. In contrast, the Sequencer makes
a point of not providing any predefined UI bindings. It pro-
vides enter and exit events, and leaves it entirely to appli-
cation code to implement appropriate effects in the DOM.
This ensures that the rich UI capabilities of the Web plat-
form can be fully exploited for timed applications. In short,
timing objects and Sequencers reduce the challenge of timed
Web programming to the problem of regular Web program-
ming. UI elements for control and progression bind to the
timing object, not the Sequencer, and may be developed
independently as reusable components.

2.9 Dynamic data
Some sequencing solutions allow timed data to change dy-

namically during playback, without requiring a full reload or
other disturbances to the presentation. Such dynamism is
key to a number of attractive features in multimedia, in-
cluding interactivity, live authoring, collaborative content
production, personalization, adaptation and responsiveness.
In SMIL, interactivity is supported by indeterminate timing,
allowing the end of a time interval to remain unspecified un-
til user input is provided. However, as timing relations are
defined in declarative XML, implementing dynamic changes
is complicated. As mentioned above, SMIL State [12] ad-
dresses this by allowing dynamic variables to be shared be-
tween SMIL runtime and external components.

Dynamic sequencing is particularly important in multi-
device media, where timed data may be hosted by online
services and shared between multiple viewers across the In-
ternet. Modifications made to online data sources should
become visible for all connected viewers, preferably as soon
as the data is available. Text tracks and the Sequencer sup-
port this by allowing cues to be added, modified or removed
at any time during playback. This is a bit harder to achieve
in the timeout based execution model of the Sequencer.

3. TIMING OBJECT
The Sequencer is directed by an external timing object [7].

Figure 1: The timing object is represented as move-
ment (in real-time) of a point, along a timeline
(axis). At any moment the timing object has well
defined position, velocity and acceleration. The cur-
rent position is marked with a red circle, and for-
ward velocity is indicated by the red arrow.

The timing object is a generalization over common tim-
ing concepts such as clocks, timers and playback controls,
and proposed as a unifying approach for timing and tempo-
ral control in Web applications. As illustrated in figure 1
the timing object implements media playback as determin-
istic motion along a timeline (axis). The timing object is
based on concept of Media State Vector [6] and is essen-

tially defined by a clock and a vector. The vector describes
the initial state of the current movement, timestamped rel-
ative to the clock. This way, future states of the timing
object may be calculated precisely from the initial vector
and elapsed time. Velocity and acceleration describe contin-
uous movement along the timeline, whereas a discrete jump
on the timeline is achieved by dictating a new position. Zero
velocity and acceleration (i.e. no movement) is considered a
special case of movement.

Crucially, the timing object is also designed to be shared
between independent media components, including Sequencers.
This way media playback may be precisely synchronized
across media components, and media control (i.e. motion
changes) may affect all components in unison. Media com-
ponents may listen to change events emitted by the timing
object, to learn about motion changes in a timely manner.
This gives raise to a simple API for the timing object, with
two operations and one event.

3.1 Timing Object API

Constructor
The timing object constructor optionally specifies range for
the timeline.

var to = new TimingObject(options);

Query
The query operation calculates the current state of the tim-
ing object, i.e. current position, velocity and acceleration.

var v = to.query();
console.log("pos " + v.position);
console.log("vel " + v.velocity);
console.log("acc " + v.acceleration);

Update
The update operation requests a modification of the timing
object by providing new values for position, velocity and/or
acceleration.

// play from current position
to.update ({ velocity :1.0});
// jump to start and pause
to.update ({ position: 0.0, velocity: 0.0});

Change Event
Event callbacks may be registered and unregistered using
on() and off() methods.

var h = function (){}; // event listener
s.on("change", h);
s.off("change", h);

4. SEQUENCER
The Sequencer manages a collection of (key, interval) as-

sociations, where intervals define the temporal validity of
keys. A (key, interval) association is also known as a cue.
The Sequencer then emits enter and exit events at the cor-
rect time, as cues dynamically become active or inactive,
using the timing object as timing source. The Sequencer
also supports dynamic changes to its collection of cues dur-
ing playback.

4.1 Sequencing with the Timing Object
The Sequencer exploits the determinism of the timing ob-

ject to calculate exactly when future events should be emit-
ted. This way execution may be driven by timeouts . Calcu-
lations are triggered on every change event, and performed
based on a fresh query result from the timing object. The
Sequencer never updates the timing object.

As a mediator of media control, the timing object is quite
expressive, supporting any position, velocity or acceleration
on the timeline. This includes the discrete, step-wise move-
ment of a slide-show, but also the continuous playback of
a video, be it regular speed, slow-motion or fast-forward.
Negative velocities, or acceleration may be more useful for
data visualization and animation. As the Sequencer is in-
tended as a generic tool, it must support all possible states
and state transitions of the timing object, and ensure that
the set of active cues always remains consistent. For ex-
ample, if the timing object skips to a new position on the
timeline, enter and exit events must be emitted accordingly.
Or, during playback, enter and exit events must be emitted
at precisely the correct time.

Note also that the Sequencer supports dynamic switching
from one timing object to another. For example, this al-
lows switching from public live presentation to private time-
shifted presentation, or joining a friend in a co-viewing ses-
sion, by switching to his timing object.

4.2 Sequencing points and intervals
The Sequencer works on timed cues, where temporal va-

lidity of keys are expressed in terms of intervals or singular
points. Singular points are considered a special case of in-
terval, with length zero.

An interval is expressed by two floating point values low
and high, where low <= high. If low == high the Interval
is said to represent a singular point [low]. An interval may or
may not include its endpoints. This is defined by optional
boolean flags lowInclude and highInclude. For example,
[a, b], [a, b), (b, a], (a, b) are distinct intervals. If lowInclude
and highInclude are omitted, [a, b) is the default value. Spe-
cial values −Infinity or Infinity may be used to create un-
bounded intervals, e.g. [low, Infinity] or [−Infinity, high].

This fine grained control over endpoint inclusion may some-
times be required for all the states of a media presentation
to be well defined. In particular, if presentation states are
defined by non-overlapping, back-to-back intervals along the
timeline, e.g. [a, b), [b, c), [c, d), ... endpoint inclusion/exclu-
sion helps avoid ambiguities at the endpoints.

Endpoint inclusion/exclusion also matters when multiple
intervals have the same endpoint, as it affects the ordering
of emitted events. If the playback direction of the timing
object is forwards, events will be emitted according to the
ordering below. If the direction is backwards, the ordering
is reversed. Note also that the Sequencer emits both enter
and exit events for singular points.

•) exit interval with endpoint excluded

• [enter interval with endpoint included

• [enter singular point

•] exit singular point

•] exit interval with endpoint included

• (enter interval with endpoint excluded

4.3 Data-independent sequencing
The Sequencer is data-independent, working on (key, in-

terval) associations known as cues. To use the Sequencer,
application programmers parse objects from the data model
and register cues with the Sequencer. Whenever the Se-
quencer emits an enter event or an exit event, the appro-
priate cue is provided to the event listener, thereby allow-
ing application code to resolve the appropriate object in the
data model. This way, the keyspace decouples the Sequencer
from the data model. The Sequencer does not itself gener-
ate keys, but leaves design of the keyspace entirely to the
application. In this respect the Sequencer is similar to an
associative array.

4.4 Window sequencing
The Sequencer supports two modes of operation, default

sequencing or window sequencing. The difference relates to
how active and inactive states are defined for cues.

default sequencing window sequencing

Table 1: Sequencing of multiple tracks of timed data.
Different tracks have different colors. Default se-
quencing involves one timing object, whereas win-
dow sequencing involves two.

Table 1 (left) illustrates default sequencing with a se-
quencing point (red circle, vertical line) moving along the
timeline. This moving point is defined by the current posi-
tion of the timing object. Cues intersected by the vertical
line are active cues. More formally, in default mode a cue
is active if its cue interval covers the sequencing point. In
the illustration cues from the green and purple track are
currently active. A cue from the brown track has just been
exited, and in a short while a blue cue will be entered and
then quickly exited.

Table 1 (right) illustrates window sequencing with a se-
quencing window (gray area between vertical lines) moving
along the timeline. The sequencing window is defined by two
sequencing points, each defined by a timing object. Cues
visible between these vertical lines are active cues. More
formally, a cue is active if its cue interval is fully or par-
tially covered by the sequencing window. In the illustration
4 brown cues, 2 yellow, 1 purple, 2 green and 3 red cues are
currently active.

Window sequencing may be helpful for precisely timed vi-
sualization of a sliding window of timed data. Prefetching
and buffering of timed data may also be orchestrated in a
timed manner, following the same metaphor. Note that the
two timing objects can be controlled independently, so the
Sequencer allows great flexibility in the control of the se-
quencing window at any time. For instance, a buffer might
grow or shrink during playback to implement certain opti-
misations in resource consumption. Note also that default
sequencing is a special case of window sequencing, where

the sequencing window has collapsed into a single sequenc-
ing point.

4.5 Sequencer events
The Sequencer supports three distinct event types; enter,

exit and change. Enter and exit events relate to changes is
the set of active cues, i.e. a cue becoming active or inactive.
In contrast, change events relate to modifications of active
cues which remain active. For instance, the interval of an
active cue might have been stretched. Change events allow
visualizations driven by the Sequencer to pick up all relevant
events for active cues.

Note also that intervals representing singular points will
emit both enter and exit events during playback. If the tim-
ing object is paused precisely at such a singular point, only
the enter event is emitted. The exit event will be emitted as
the position is later changed.

4.6 Dynamic sequencing
The Sequencer allows changes to the cue collection at any

time, with immediate and consistent effects. Removing an
active cue will cause an exit event to be emitted. Similarly,
adding a new cue will cause an enter event if the new cue is
active. Modification of an existing cue is supported by re-
placement. Modifications may cause an active cue to become
inactive (exit event), or an inactive to become active (enter
event). As mentioned above, if cue modification causes an
active cue to remain active, a change event is emitted.

5. PROGRAMMING

5.1 Sequencer API
The following outlines the essential parts of the Sequencer

API. The complete API documentation, example code and
demonstrations are available at the timingsrc [2] Website.

Constructor
The Sequencer constructor takes one, or optionally two tim-
ing objects as parameters, implying default or window se-
quencing mode. The Sequencer is immediately operational.

var to = new TimingObject ();
var s = new Sequencer(to);

Adding and removing cues
addCue associates a key (String) with an interval (Interval),
replacing previous associations if necessary. This way, add-
Cue also supports cue modification. removeCue removes a
key interval.

var iv = new Interval (12.2, 14.4);
s.addCue("mykey", iv);
s.removeCue("mykey");

Active cues
The Sequencer maintains a list of active cues.

var isActive = s.isActive("mykey");
var keys = s.getActiveKeys ();

Cue events
Events emitted by the Sequencer include the context of the
event, in particular its key, interval and event type. Event
callbacks may be registered and unregistered using on() and
off() methods.

e.key // cue key (String)
e.interval // cue interval (Interval)
e.type // cue event type (String)

var h = function(e){console.log(e.key)};
s.on("enter", h);
s.off("enter", h);

The three basic event types of the Sequencer are enter,
exit, or change. Additionally the Sequencer provides a spe-
cial fourth event type events which provides all basic event
types to a single event handler, delivered in a list. This
allows programmers to process Sequencer events in batch
mode. This may be useful when multiple events occur si-
multaneously, for instance if interval endpoints have same
value. If so, all effects may be applied to the UI in a single
operation.

5.2 Example
Making a timed presentation using the Sequencer only

requires a few simple steps.

Create Webpage
Create Webpage with timing object, Sequencer and elements
for data viewer and timing object controls.

<html >
<head >

<script text="javascript">
var to = new TimingObject ();
var s = new Sequencer(to);
// app logic here

</script >
</head >
<body >

<div id="viewer" ></div >
</body >

</html >

Parse and register timed data
Timed data is defined in an array. Cues are registered with
the Sequencer using array indexes as unique keys.

var array = [
{ data: ’A’, start: 0, end: 1 },
{ data: ’B’, start: 2, end: 3 },
{ data: ’C’, start: 4, end: 5 },
...

];
for (var i=0; i<array.length; i++) {

var o = array[i];
var iv = new Interval(o.start ,o.end);
s.addCue(i.toString (),iv);

}

Implement UI
Set up event handlers for Sequencer events. Data associated
with active cues is displayed.

var v = document.getElementById("viewer");
s.on("enter", function (e) {

var i = parseInt(e.key);

v.innerHTML = array[i].data;
});
s.on("exit", function (e) {

v.innerHTML = "";
});

Start presentation
Start playback by interacting with the timing object.

to.update ({ position :0.0, velocity :1.0});

5.3 Programming model
As illustrated by the above example, the data-independence

and UI-independence of the Sequencer enable an attractive
programming model for timed Web applications. Timing is
solved and encapsulated by timing objects and Sequencers,
leaving the programmer with two fairly simple tasks; 1) pars-
ing timed data and 2) implementing a viewer.

1. Given a data model, a parser function extracts tempo-
ral information from the data model and registers cues
with the Sequencer. If the data model is dynamic, new
changes must be reflected in the Sequencer too.

2. Implementing a viewer for timed data typically in-
volves visualizing the correct data at the correct time
in the DOM. This is achieved by implementing han-
dlers for Sequencer events; enter, exit and change.
Handler logic is application-specific and works directly
with the given (application-specific) data model.

In short, the programmer defines input data and output
visualisation, with the unrestricted power of the Web plat-
form at hand. This is also perfectly aligned with reactive,
event-driven and data-driven models for Web programming.

Note also that application programmers have much flexi-
bility in how timed data is mapped onto the timeline. For
instance, consider the linear presentation of a chess game.
The linear state may be defined either as a sequence of board
positions, or as a sequence of piece moves. Which to choose
is up to the programmer. If linear state is a sequence of
board positions, each board position will be mapped to an
interval on the timeline. Enter and exit events from the
Sequencer will then trigger state transitions between board
positions in the presentation. If linear state is rather a se-
quence of piece moves, each piece move will be mapped to a
singular point on the timeline. Events from the Sequencer
may then be used to calculate board positions, perhaps by
applying a piece move to the current board position.

6. IMPLEMENTATION
We have implemented the Sequencer in plain JavaScript.

Source code for the timing object and the Sequencer is open
sourced on GitHub as part of the timingsrc [2, 3] reposi-
tory maintained by W3C Multi-device Timing Community
Group [20].

The execution of the Sequencer is ultimately driven by
changes in the timing object or changes in the cue collection.
For example, whenever a change event is emitted by the
timing object, the set of active cues must be re-evaluated to
remain consistent with the new state of the timing object.
Similarly, changes in the cue collection must be reflected
correctly in the set of active cues, and appropriate events
must be emitted.

In addition, when the timing object specifies non-zero ve-
locity or acceleration, the set of active cues must be re-
evaluated at precisely the correct time, as cues become active
or inactive. The Sequencer does this by calculating exactly
when future tasks are due, and then schedules their execu-
tion using a timeout.

Mathematical equations for linear motion under constant
acceleration are used to calculate future time-intersections
between the timing object and intervals on the timeline. If
acceleration is non-zero, calculations involve solving quadratic
equations. These are still cheap calculations. Scheduled
tasks are put on a sorted task queue, from which the main
loop of the Sequencer processes all due tasks. When all due
tasks have been processed, a new timeout is scheduled based
on the calculated time of the next task. This way, the Se-
quencer maintains at most one timeout at any time (two
timeouts in window sequencing mode). If either the timing
object or any of the cues are changed, scheduled tasks need
to be recalculated.

Device Browser Avg Min Max

Desktop Chrome -0.373 -0.827 0.588
Desktop Firefox -0.049 -1.037 7.413
Laptop Chrome 4.324 -0.431 5.494
Laptop Firefox 3.783 -0.051 5.787
Mobile Chrome 1.215 -0.348 4.232
Mobile Firefox 1.610 -0.379 10.114

Table 2: Measuring lateness of setTimeout call-
backs. A negative value implies that the timeout
was not late, but early. Values in milliseconds.

The precision of the Sequencer is limited by the precision
of JavaScript setTimeout. Table 2 gives a rough indication
of how setTimeout behaves in Chrome and Firefox browsers
running on a few common device types. The desktop is a
Hewlett Packard office computer running Ubuntu, the Lap-
top is a MacBook Air running OSX, and the mobile is a
Samsung S4 running Android.

In the experiment 100 timeouts are processed over a pe-
riod of 100 seconds. For each timeout, the lateness of the
timeout callback is computed, using performance.now() as
reference. Values are given in milliseconds. Negative values
imply that the timeout was not late, but early.

The results show that average precision may be expected
within a few milliseconds, which is quite acceptable for a
wide variety of applications. In particular, this is well below
the screen refresh rate, which is often 60Hz or lower (17
milliseconds or higher).

On the other hand, setTimeout is handled by the browser
main event queue, implying that unrelated processing in
the browser may cause timeouts to be significantly delayed.
This is particularly true on low-end devices. Modest im-
provements might be possible in JavaScript, for instance by
scheduling timeouts early and finding ways to spend the
remaining time, until the timeout is due. However, busy
looping is not an elegant solution, causing side effects such
as lagging UI and increased power consumption. Instead,
this highlights the need for native timing support in Web
browsers to improve, especially on low-end devices.

Finally, the Sequencer is designed to work effectively with
a large cue collection. Internally, the Sequencer uses binary
search for efficient lookup.

7. EVALUATION
The Sequencer has been in repeated use for a couple of

years already in a variety of multimedia applications. In
this period a number of bugs have been identified and re-
solved. Corner cases have been tested and verified by care-
fully scripted tests. The API has also been adjusted for sim-
ple use and is now considered stable and production quality.
The Sequencer is currently functionally complete, correct,
reliable and easy to use. To indicate the broad utility of
the Sequencer, we detail a selection of scenarios in Web-
based multimedia where we have found the Sequencer to be
a valuable tool.

7.1 Editing subtitles during playback
The HTML5 media element provides built-in support for

subtitles. Still, we have found it quite attractive to ignore
this feature and instead use the Sequencer for subtitle pre-
sentation, for instance in a transparent layer on top of the
media element. The MediaSync library [2, 3, 8, 9] ensures
that the Sequencer and the media element are precisely syn-
chronized via a shared timing object. This setup provides
flexibility in rendering of subtitles. More importantly, since
there is no obligation to use a standard format (e.g. We-
bVTT) we could easily integrate with application-specific
JSON data from an online service. As the online service
supports notifications and the Sequencer supports dynamic
cue changes, we can immediately demonstrate live editing
and authoring of subtitles during playback. Subtitles may
for instance be stretched, time-shifted or edited. With sup-
port for multi-device playback this qualifies as a rudimentary
system for collaborative viewing and commenting on linear
content.

7.2 Multi-device slide show
A simple slide show may be created by mapping objects to

integers, and using the timing object to implement stepwise
slide navigation. The Sequencer then provides the correct
object to the slide viewer at any time. We have used this
to craft a multi-device slide show where each slide is a Web
page. This means we can remote control a multi-device Web-
based slideshow for a global audience. Typically we also
provide a secondary track of slides for a secondary view, on
mobile or similar. One Sequencer runs the slide show, but
each individual slide may also include Sequencers for other
purposes.

7.3 Time-shifting live data
Live production of timed cues presents a particular chal-

lenge, as both endpoints of a cue interval may not be known
at production time. This is easily solved with the Sequencer.
For instance, one may simply define a preliminary cue inter-
val that stretches into infinity: [start, Infinity), and then
later when the endtime is available the cue interval is simply
replaced with [start, end). We have used this technique as a
basis for live production of HTML5 chess visualization. An
interactive chess board widget allows two players to play a
game of chess. Every time a piece is moved, a timestamp
from the timing object (production time) is used to end the
previous board position and start the next. In effect, we cap-
ture a time series of board positions, based on the natural
interactions of the players. This time series is then readily
available for time-shifted playback. In fact, the board visu-
alization widget uses the Sequencer to present the correct

board position, given the current state of the timing object
(visualization time). If the same timing object is used for
production-time and visualization-time, this corresponds to
live (real-time|direct) presentation. Time-shifted playback
of live data only requires a different (time-shifted) timing
object to be used for visualization-time. Finally, this entire
experience was made multi-device by representing board po-
sitions and timing objects as online resources. This way, we
could demonstrate natural authoring of multimedia through
distributed timed capture of collaborative interaction, with
distributed live and time- shifted playback. The timing com-
plexity of this application is considerable, yet fully encapsu-
lated by timing objects and Sequencers.

7.4 Secondary device, companion view
Companion apps and second screen applications are often

motivated as a way of providing supplementary information
and interactive capabilities to linear experiences. Typically
these applications are developed as native applications for
smartphones and tablets, with temporal alignment based on
audio fingerprinting, local network communication or similar
near-range techniques. Using sequencing and online timing
objects, we made a simple, Web-based companion view for
videos. We use the subtitles track from the video to produce
a list of timed keywords. For each keyword, we provide a
relevant information card, an external Web page or similar.
Using the Sequencer these keywords are then replayed and
visualized on a phone or tablet, allowing the user to look at
the device for contextual information. Note that the com-
panion view does not have neither audio nor video, but is
based only on the subtitles combined with an online timing
object for synchronization. Implementing such timed com-
panion views as live Web pages is a very attractive approach.
Compared to native applications, they are simpler in devel-
opment, require no installation and work across platforms.
Even more interesting, live Web pages produced as timed
Web pages trivially support time-shifting. This means that
live Web productions become reusable for on-demand media
consumption.

A complication in this kind of use case is that smartphones
and tablets are power-saving or sleeping while idle. So, as
the user unlocks the screen, network connections might need
to be reconnected and correct data must be rendered as soon
as possible. However, as long as effects of reconnects mate-
rialise as change events to timed data or timing object, this
is indistinguishable from normal operation, from the per-
spective of the Sequencer. As a result no additional efforts
are required from the programmer and correctness is not
in conflict with established mechanisms for reduced power
consumption.

7.5 Limitations
The Sequencer is intended as a generic and simple pro-

gramming tool. For this reason the design of the Sequencer
has been guided by the minimalist principle. For example,
as discussed in Section 2.5, the Sequencer does not provide
special support for relative timing.

Periodic cues is another useful, yet unsupported feature.
Periodicity may be currently be achieved by copying cues,
though this is not a particularly elegant solution. A second
approach to repetition would be to loop the timing object.
A third approach is to build repeat support into the cue
collection of the Sequencer. This has been done and verified

to work, but is currently not included in the Sequencer.
More flexibility with respect to the key-space could also

be useful. For example, the Sequencer cues could associate
multiple intervals to one key, or multiple keys to one inter-
val. Also, a hierarchical name space for keys could simplify
sequencing of multiple unrelated data sources. Following
this, support for event filtering could be added based on key
prefixes.

In the end, these extra features would complicate the API
and possibly obfuscate the basic concept. Instead of aiming
for one Sequencer that does it all, we imagine a selection of
Sequencer variants. Application programmers would then
pick the ones that match their problem. More specialised
Sequencers may even be crafted by wrapping and extend-
ing the basic Sequencer. This would only strengthen the
concept.

With respect to implementation, the JavaScript Sequencer
is limited by timing capabilities of current Web browsers, in
particular the precision of the setTimeout mechanism. Cur-
rently precision is limited to about a millisecond and pro-
cessing in the browser may cause timeouts to be significantly
delayed.

In addition, packing the timeline too densely with cues
(or equivalently applying too much velocity to the timing
object), as well as defining time consuming tasks in event
handlers would be problematic. This though is not specific
to the Sequencer, but applies to JavaScript applications in
general.

If precise sequencing was supported natively by Web browsers,
it is likely that timing guarantees could be stronger and pre-
cision improved.

8. DISCUSSION

8.1 Any kind of timed data, any purpose
The Sequencer API is inspired by text track API sup-

ported by HTML media elements. However, by isolating
sequencer logic from media elements, specific data formats
and UI solutions, the value of the Sequencer as a generic
programming concept becomes more evident.

Sequencing logic is recognised as part of any media frame-
work. Using the Sequencer, programmers may easily build
new frameworks and timed components. The Sequencer may
be used to produce Web-based visualisations from any kind
of timed data, or to organize the correct execution of any
timed operation. Examples of timed resources might in-
clude timed images, text, CSS, JSON, HTML, scripts, geo-
locations, timed sensor-data, SVG, audio samples, canvas
operations etc. In other words, anything Web can be timed.

The Sequencer may also be used for timed actions that do
not produce audiovisual effects. For instance, consider timed
pre-fetching of data, or testing a system with timed network
requests from distributed clients, while simulating temporal
patterns in network load. The ability to present data at the
correct time may also be used to reduce complexity in con-
tent transfer. In particular, real-time (multicast) streams
are often used as a mechanism to preserve time-ordering
and timing relations across a network. With timestamped
messages and a Sequencer on the receiving end, temporal
relations may be correctly re-created, independent of the
mechanism used for data transfer. This gives more flexibil-
ity in the choice of transport mechanism, and potentially
reduces complexity at the sender-side.

8.2 Sequenced media
The Sequencer is designed exclusively for timed data. Still,

importantly, the Sequencer plays a fundamental role in rich
media productions, where presentations are being synthe-
sised in real time from a mix of continuous and discrete
media sources. In such presentations a variety of video and
audio tracks may be anchored to the same timeline, possi-
bly overlapping, or with gaps in-between. The Sequencer
then orchestrates timely loading and unloading of a vari-
ety of media objects, including audio and video tracks.1 In
broadcasting, sequencing has typically been organized rela-
tive to a master video track. Instead, by putting sequencing
logic at the center, sequenced media offers a more general
model where the standard broadcasting approach is merely
a special case. In short, for sequenced media the timing ob-
ject defines motion (playback, progress) along the timeline
and the Sequencer implements the temporal structure of the
presentation.

For broadcasters, the transition to sequenced media is set
to become a major shift in the years to come. The BBC has
labelled this object-based broadcast OBB (or object-based
media) [11], and promotes this concept as a re-invention of
broadcasting for the IP world. The core idea is to represent
and disseminate media as individual objects (as opposed to
a byte stream), and then synthesise them into timed pre-
sentation on the client-side. This is key to a number of de-
sirable features in media products, such as personalization,
accessibility, interactivity, dynamism, extensibility, live edit-
ing/authoring, responsiveness and adaptation. Composite
Media [4] was a contemporary definition of the same idea.
Like OBB, Composite Media emphasises client-side, real-
time synthesis of media objects, from independent online
data sources. Significantly though, Composite Media takes
the idea one step further, as it is based on a model for dis-
tributed timing and temporal control that works in the Web
environment. This effectively extends the scope of sequenced
media from single-device playback to globally synchronized
experiences.

8.3 The timed Web
The availability of timing and sequencing tools in Java-

Script has profound implications for the Web as multimedia
platform. The Web always was a multimedia platform, but
early support for timed multimedia was mainly provided by
dedicated plugins isolated from the Web runtime. SMIL [31]
and SVG [26] provided timing and vector animations. Later,
Flash gained wide adoption by providing support for audio,
video and animations, as well as cross-platform consistency
and effective authoring tools. The plugin-based multimedia
model favoured sophisticated, feature-rich frameworks and
complex (proprietary) media formats. Still, the disconnect
from the Web platform itself was problematic. This was
partly compensated by replicating popular features of the
Web runtime inside the media framework, essentially making
it a browser within a browser.

HTML5 brought proper support for AV media to the Web,
opening the possibility for native multimedia support in Web
browsers. However, with no explicit timing model, Web-
based multimedia got centered around media elements. The
idea was to synchronize other media to the playback of the

1media elements additionally require synchronization for AV
playback to be correctly aligned with the timeline. The Me-
diaSync library [2, 3, 8, 9] is available for this purpose.

media element and text track support was introduced for
this purpose. Media elements were also strengthened with
Media Source Extensions (MSE) [25], and further integra-
tion with SVG and Canvas [23] animations has also been
suggested. Still, this AV centric model has some clear lim-
itations. The timing model is coarse, and difficulties arise
when media presentations include multiple media elements,
or none.

Now, with the introduction of the timing object and the
Sequencer, a proper timing model is available directly in
the Web runtime. This eliminates the limitations of the AV
centric model, and online timing objects enable precisely
synchronized multimedia playback, globally, on multiple de-
vices. Furthermore, multimedia developers may harness the
full power of the Web browser as a multimedia playback
renderer. This includes unrestricted use of well established
tools and technologies for Web development, as well as in-
tegration with application specific data models and online
services. Hopefully, with native Web support for timing and
sequencing, the Web may realise its true potential as the
ultimate platform for distributed, timed multimedia. This
is the timed Web.

9. CONCLUSIONS
This paper emphasizes sequencing as a vital part of mul-

timedia, and advocates the decoupling of sequencing logic
from data model, UI and timing/control. The Sequencer is
presented; a generic tool for sequencing of cues defined by
intervals and points on the timeline. Our JavaScript imple-
mentation of the Sequencer is based on setTimeout, ensur-
ing precise timing of event callbacks while reducing energy
consumption. It is also designed to work effectively with a
large cue collection. The Sequencer uses the timing object
as external timing source. This implies that the Sequencer
supports temporal controls appropriate for a wide range of
media applications, and is readily available for traditional
page-local playback scenarios. More impressively, through
the use of online timing objects, the Sequencer supports
distributed multimedia Web applications depending on glob-
ally synchronized playback. The mathematical model used
for timing objects and the Sequencer allows great flexibility
while keeping the concepts well defined and easy to under-
stand. Support for window sequencing further broadens the
utility of the Sequencer.

We argue that this generic Sequencer concept, realised
as an easy-to-use, standalone programming tool, has con-
siderable value for programmers of timed Web applications.
In particular, the Sequencer reduces development costs and
boosts innovation. This has consistently been confirmed
through repeated use in a wide variety of multimedia ap-
plications over the last few years. The Multi-device Timing
Community Group advocates standardization of the tim-
ing object and sequencing tools, as central concepts in a
new programming model for timed, multi-device, Web-based
multimedia applications.

10. ACKNOWLEDGEMENTS
The authors would like to thank François Daoust and

Dominique Hazael-Massieux of the W3C for reviewing this
work and for sharing their insights into the evolution and
current state of related Web standards. We also want to
thank the reviewers for helpful comments.

11. REFERENCES
[1] Adobe. Adobe Flash.

https://www.adobe.com/products/flashruntimes.html.

[2] I. M. Arntzen and N. T. Borch. Timingsrc: A
programming model for timed web applications, based
on the Timing Object. Precise timing, synchronization
and control enabled for single-device and multi-device
Web applications.
http://webtiming.github.io/timingsrc/.

[3] I. M. Arntzen and N. T. Borch. Timingsrc: Open
source implementation.
https://github.com/webtiming/timingsrc.

[4] I. M. Arntzen and N. T. Borch. Composite Media, a
new paradigm for online media. In 2013 NEM Summit
(Networked Electronic Media), NEM Summit ’13,
pages 105–110. Eurescom, 2013.

[5] I. M. Arntzen, N. T. Borch, F. Daoust, and
D. Hazael-Massieux. Multi-device linear composition
on the web; Enabling multi-device linear media with
HTMLTimingobject and Shared Motion. In Media
Synchronization Workshop (MediaSync) in
conjunction with ACM TVX 2015. ACM, 2015.

[6] I. M. Arntzen, N. T. Borch, and C. P. Needham. The
media state vector: A unifying concept for
multi-device media navigation. In Proceedings of the
5th Workshop on Mobile Video, MoVid ’13, pages
61–66, New York, NY, USA, 2013. ACM.

[7] I. M. Arntzen, F. Daoust, and N. T. Borch. Timing
Object; Draft community group report.
http://webtiming.github.io/timingobject/.

[8] N. T. Borch and I. M. Arntzen. Distributed
synchronization of html5 media. Technical Report 15,
Norut Northern Research Institute, 2014.

[9] N. T. Borch and I. M. Arntzen. Mediasync report
2015: Evaluating timed playback of html5 media.
Technical Report 28, Norut Northern Research
Institute, 2015.

[10] D. C. Bulterman, J. Jansen, K. Kleanthous, K. Blom,
and D. Benden. Ambulant: A fast, multi-platform
open source SMIL player. In Proceedings of the 12th
Annual ACM International Conference on Multimedia,
MULTIMEDIA ’04, pages 492–495, New York, NY,
USA, 2004. ACM.

[11] T. Churnside. Object-Based Broadcasting.
http://www.bbc.co.uk/rd/blog/
2013-05-object-based-approach-to-broadcasting, 2013.

[12] J. Jansen and D. C. Bulterman. Enabling adaptive
time-based Web applications with SMIL State. In
Proceedings of the Eighth ACM Symposium on
Document Engineering, DocEng ’08, pages 18–27, New
York, NY, USA, 2008. ACM.

[13] J. Jansen, P. Cesar, R. L. Guimaraes, and D. C.
Bulterman. Just-in-time personalized video
presentations. In Proceedings of the 2012 ACM
Symposium on Document Engineering, DocEng ’12,
pages 59–68, New York, NY, USA, 2012. ACM.

[14] Microsoft. Microsoft Silverlight.
http://www.microsoft.com/silverlight/.

[15] MMA. The MIDI Manufacturers Association (MMA).
https://www.midi.org/specifications.

[16] Shared Motion by Motion Corporation.
http://motioncorporation.com.

[17] Mozilla. Popcorn.js the HTML5 media framework.
http://popcornjs.org/.

[18] MPEG-4.
http://mpeg.chiariglione.org/standards/mpeg-4.

[19] MPEG-4 Systems. http:
//mpeg.chiariglione.org/standards/mpeg-4/systems.

[20] Multi-device Timing Community Group.
https://www.w3.org/community/webtiming/.

[21] M. Shotton. HTML5 Video Compositor.
https://github.com/bbc/html5-video-compositor.

[22] Ambulant open SMIL player.
http://ambulantplayer.org/.

[23] W3C. HTML Canvas 2D Context.
https://www.w3.org/TR/2dcontext/.

[24] W3C. HTML5 Text Track. http://dev.w3.org/html5/
spec-preview/media-elements.html#text-track.

[25] W3C. Media Source Extensions.
https://www.w3.org/TR/media-source/.

[26] W3C. Scalable Vector Graphics (SVG) 1.1.
https://www.w3.org/TR/SVG/.

[27] W3C. SMIL 3.0 synchronized multimedia integration
language. http://www.w3.org/TR/REC-smil/.

[28] W3C. Time-marches-on.
http://www.w3.org/html/wg/drafts/html/master/
semantics.html#time-marches-on.

[29] W3C. Web Audio API.
http://webaudio.github.io/web-audio-api/.

[30] W3C. WebVTT: The Web video text tracks format.
http://dev.w3.org/html5/webvtt/.

[31] W3C. Synchronized multimedia integration language
(SMIL) 1.0 specification.
https://www.w3.org/TR/1998/REC-smil-19980615/,
Jun 1998.

