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ABSTRACT
In this paper we investigate several network-assisted streaming ap-
proaches which rely on active cooperation between video streaming
applications and the network. We build a Video Control Plane
which enforces Video Quality Fairness among concurrent video
flows generated by heterogeneous client devices. To the purpose,
a max-min fairness optimization problem is solved at run-time.
We compare two approaches to actuate the optimal solution in an
SDN network: the first one allocating network bandwidth slices
to video flows, the second one guiding video players in the video
bitrate selection. Performance is assessed through several QoE-
related metrics, such as Video Quality Fairness, video quality,
and switching frequency. The impact of client-side adaptation
algorithms is also investigated.

CCS Concepts
•Information systems→Multimedia streaming; •Networks→
Network management;

Keywords
Adaptive Video Streaming; DASH; network-assistance; Control
Plane; Quality of Experience; Fairness

1. INTRODUCTION
The amount of video content that is being distributed over the

Internet is increasing thanks to the wide diffusion of Smart TVs,
tablets, and smart phones [4]. Today, video providers leverage the
HTTP infrastructure made of servers and CDNs to scale their video
delivery system and reach their users. However, scalability is not
the only concern for video providers. User-centric objectives like
service costs or Quality of Experience (QoE) significantly impact
user engagement. Accordingly, video providers have to satisfy
user expectations to avoid user abandonment and thus to increase
revenues [15]. One of the main influence factors, which thus has to
be improved, is the QoE [1, 15, 20].

Video providers currently rely on HTTP adaptive streaming
approaches, a technique allowing video quality adaptation on short
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time scales, to deliver video clips to the users. Network resource
allocation is managed in a distributed way at the end-points by
each client. Video clients are equipped with controllers allowing
to autonomously change the video bitrate to improve the QoE [22].
These HTTP adaptive streaming algorithms are designed to avoid
playback interruptions due to buffer underruns and to maximize the
video bitrate – possibly matching the end-to-end bandwidth – while
containing the video bitrate switching frequency [1].

The simultaneous presence of several adaptive video stream
flows transmitted via a shared bottleneck link results in a fair
bandwidth distribution among the involved flows. QoE-relevant
influence factors like the device capabilities or the user context
are not taken into account. For instance, users with small screens
are served with the same video bitrate as users with large screens,
resulting either in bad QoE for users with large screens or in
wasted network resources due to the over provisioning of video
quality. The resources are fairly shared with respect to the QoS
parameters, but not with respect to the user’s QoE [10]. To
overcome this problem, interaction between video and network
provider is required.

The exchanged information can be leveraged by a video control
plane enforcing network-assisted streaming strategies. To enable
active cooperation between network elements, a standard signalling
plane is required, such as the one proposed by Server And Network
Assisted DASH (SAND DASH)1. This allows a network element
to trigger a control mechanism such as quality adaptation, flow
prioritization or bandwidth reservation, based on network state and
client context. Software Defined Networking (SDN) is a viable
technology to implement such mechanisms due to the presence of
a centralized control element, which is especially beneficial in the
presence of complex topologies [26].

Our work provides a broad investigation of the design space of
video control planes by studying several network-assisted strate-
gies. In particular, we compare the performance of three cate-
gories of network-assisted approaches. The Bandwidth Reservation
assigns a bandwidth slice to a video flow (or a group of video
flows). Two nested control loops are established as shown in
Figure 1 (a): the outer control loop is executed in the network
and sets the bandwidth slice, whereas the inner control loop,
running at the client, autonomously selects the video bitrate based
on video client feedback and bandwidth estimates. In this paper
we consider several bandwidth reservation strategies and several
client-side adaptation algorithms in order to assess interactions
between these two control loops. Additionally, we take into
account the constraints imposed by the capabilities of the current
hardware (i.e. limited number of configurable bandwidth slices) by
proposing mechanisms to address this issue. The second category,

1https://tools.ietf.org/id/draft-begen-webpush-dash-reqs-00.txt



(a) Bandwidth Reservation

(b) Bitrate Guidance

Figure 1: Network-assisted approaches for adaptive video
streaming

Figure 2: A block diagram of the control system

shown in Figure 1 (b), is named Bitrate Guidance: when this
approach is employed the video bitrate is computed by a centralized
algorithm running in a network element and enforced by the
video client. Finally, we also take into account hybrid strategies
combining Bandwidth Reservation and Bitrate Guidance.

In order to compare the performances obtainable with these ap-
proaches we have implemented a testbed in which network-assisted
strategies enforce a management policy to maximize Video Quality
Fairness (VQF). The testbed is built using an SDN controller and
several concurrent video sessions are generated using TAPAS [8].

2. THE VIDEO CONTROL PLANE
This Section describes the Video Control Plane (VCP) that

we employ to enforce a Video Quality management policy. We
have considered a single bottleneck scenario in which resource
allocation is enforced at the bottleneck link. The VCP can be used
in any of the networks involved in the video delivery, for instance
the link connecting the ISP Access Network to the Home Router or
the egress congested link of a CDN [17].

2.1 Control System Architecture
Figure 2 shows a block diagram of the overall control system that

is made of two components: the Network Controller (NC) and the
video clients.

The Network Controller The NC runs on top of the SDN
controller and undertakes the following tasks: 1) it creates and
manages bandwidth slices implemented through dedicated queues
on the network interfaces; 2) it handles a bidirectional commu-
nication pipe with the video clients. The NC consists of three
components: the Active Flows Table, the Optimization Module and
the Network Actuator. The Active Flows Table stores information
of the currently active video sessions. Such information is provided
by each video client at the beginning of the video session. The
Optimization Module takes as input the information provided by
the table and periodically computes, each Ts seconds, the bitrate
assignment accourding to the Video Quality management policy.

Specifically, the algorithm assigns a bitrate (or bandwidth) to
each active video session. Finally, the Network Actuator is the
component enforcing the computed bitrates (or bandwidth). The
actuation mode depends on the adopted network-assisted approach
as described in Section 2.2.

Video Client The clients undertake the following tasks: 1) set-
up/teardown of the video session by sending messages to the NC;
2) download the corresponding segments for the bitrate computed
by the bitrate adaptation algorithm.

2.2 Network-assisted Streaming Approaches
In this work we consider three network-assisted strategies to

provide service differentiation to concurrent video flows: 1) the
Bandwidth Reservation approach (BR), the Bitrate Guidance ap-
proach (BG) and the approach combining Bitrate Guidance, and
Bandwidth Reservation (BG+BR). Such approaches can be imple-
mented in the control system shown in Figure 2 by combining two
parallel and independent threads, as shown in Figure 3: the Client
thread and the NC thread.

Bandwidth Reservation (BR). When this approach is used, the
NC reserves dedicated bandwidth slices to the video flows. The
NC does not send any explicit information to the video client which
independently selects the video bitrate according to its client-side
adaptation algorithm. Figure 3 (a) shows how this approach can be
implemented. The NC thread is composed of three actions repeated
in a cycle: ¶ the Optimization Module computes the bandwidth
slice assignment based on the management policy; · the Network
Actuator receives the computed bandwidth slice and ¸ creates or
updates the dedicated slice for the flow (or the group of flows).
The Client thread is made of two actions consecutively run on
each video segment download: ¬ the video bitrate is selected by
the client according to its adaptation algorithm;  the segment is
retrieved from the Content Provider.

Bitrate Guidance (BG). In this case the NC computes the
optimal video bitrate according to the Video Quality management
policy. The computed values are sent to the video clients that
download the corresponding video segments. It is important to
notice that, when using this approach, all the video flows share
the same bandwidth slice. The client shapes the download rate
in order to match the selected bitrate, thus providing service
differentiation to the flows in the shared slice. Figure 3 (b) shows
the implementation of this approach. The first two actions of the
NC thread ¶ and · are exactly equivalent to the ones executed
in the BR approach. The third action ¸ is different: instead of
creating bandwidth slices on the network interfaces, the Network
Actuator communicates the computed bitrates to the video clients.
The Client thread only runs action ¬, i.e. it downloads the
next video segment based on the video bitrate set by the NC.
Accordingly, Figure 3 (b) labels such video client as a Thin Client.
In order to make this approach scalable, clients do not send any
feedback information to the NC. As a consequence, the NC is not
aware if the playout buffer is draining and the client is required
to download a lower bitrate to quickly fill it again. For this reason,
when the playout buffer gets below a threshold, a safety mechanism
is activated and the video bitrate is selected by the client ignoring
the guidance of the NC.

Bitrate Guidance and Bandwidth Reservation (BG + BR).
This approach is enforced by combining the two strategies de-
scribed above. In particular, the third action of the NC thread is split
in two sub-actions: 1) the bandwidth reservation in the network
and 2) the bitrate guidance. The client thread is again limited to
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Figure 3: The considered network-assisted approaches

performing segment downloads, i.e. the client can be considered as
a Thin Client exactly as in the case of the BG approach.

2.3 Client side Adaptation
Client-side algorithms select the video bitrate from a discrete set

at each segment download based on parameters such as the esti-
mated bandwidth and the playout buffer length. Such algorithms
aim at improving the QoE by: 1) avoiding rebuffering events;
2) maximizing the video bitrate; 3) keeping the number of video
bitrate switches as low as possible.

In general, it is difficult to simultaneously achieve these goals
and some trade-offs have to be made. A relevant classification
to our investigation is the following, which makes the distinction
between rate-based and level-based approaches [6]. The first
approach requires the algorithm to insert pauses (OFF periods)
between the downloads of consecutive segments in order to make
the download rate match the selected video bitrate on average. As
a consequence, this approach sacrifices bandwidth utilization to
reduce video level switches. The second approach downloads the
segments back-to-back and the playout buffer is prevented from
growing by throttling the video bitrate according to a control law.
This approach achieves the full link utilization at the price of a
higher number of video level switches [6].

The interactions between the client-side control loop and the
network control loop are investigated in the case of three algo-
rithms: Conventional [25], PANDA [25], and Elastic [7]. We have
decided to employ these algorithms in order to cover both control
approaches.

Conventional is a rate-based algorithm selecting the video
bitrate based on bandwidth estimates [25]. We have considered
this algorithm to check if the Bandwidth Reservation strategy is
able to perform well even when a very simple client-side algorithm
is employed.

PANDA is a rate-based algorithm designed to cope with the
fairness issues affecting several HAS algorithms [25]. It follows
a probe-and-adapt approach, incrementing the bitrate to probe the
available bandwidth.

Elastic is a level-based algorithm employing a feedback control
technique known as feedback linearization to control the playout
buffer length by varying the video bitrate [7]. It has been shown
that Elastic is able to overcome fairness issues affecting the rate-
based algorithms.

2.4 The Management Policy
Video distribution platforms require different management poli-

cies depending on the application scenario and the employed
monetization process. Different policies could consider, for in-
stance, service differentiation based on user classes (premium

versus unsubscribed users) or on QoE-related parameters. Before
introducing the proposed management policy, it is important to
make a clear distinction between video quality and QoE. The first
term refers to metrics only related to the visual quality of the
video; the video quality can be assessed with metrics such as SSIM,
PSNR, or MSE. On the other hand, the category of QoE-related
metrics comprises all the parameters affecting the user experience,
including the video quality; other important QoE-related metrics
in the case of video streaming are rebuffering ratio, video level
switching frequency, start-up latency [20].

Video Quality Fair Allocation. Several papers focusing on the
design of video control planes have considered the use of resource
allocation based on either video quality [10] or QoE [19], which is
indeed more appropriate than fair bandwidth allocation (i.e. QoS
fairness) in the context of video delivery.

In this paper we consider, as an example, a management policy
aiming at providing fairness to concurrent video streams in terms
of video quality. A more sophisticated policy could be designed
by also taking into account other QoE-related parameters such as
rebuffering ratio and video level switches. However, we argue that
using only video quality is motivated by two reasons. First, video
quality can be computed off-line in the case of VoD. This means
that client feedback is not required, which improves scalability.
Second, QoE-related metrics are already taken into account by
client-side adaptation algorithms. This approach has the merit of
decoupling the overall problem in two subproblems one handled
centrally and one handled at the end-points.

The Optimization Problem. We have considered a simple
network composed of a single node, whose egress link is the
bottleneck link on which the network-assisted approaches are
implemented.

We consider the following scenario using the following notation.
N video sessions are active over a channel with capacity C. Each
video session n ∈ {1, . . . ,N} streams the video vn with a client
device whose screen resolution is rn. The video vn is encoded in
several video representations. Each representation is characterized
by its bitrate l̄i ∈ Ln and its resolution ri ∈ Rn. We assume
that users do not request video representations with a resolution
is higher than their screen resolution rn.

For each video session a utility function Un(·) can be defined,
which associates to each video bitrate in Ln the corresponding
perceived video quality. The next paragraph shows how such
functions are computed. It will be shown that the utility function
depends on the client screen resolution.

We are now ready to formulate the Video Quality Fairness policy
as a max-min fairness problem. The issue here is to compute, at
each sampling interval and for each active session n, the video
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bitrate ln to stream in order to maximize the minimum measured
Video Quality over all the video sessions.

Depending on the particular scenario and network-assisted strat-
egy, one of the following optimization problems will be solved.
The first, named Discrete Video Quality fair assignment, requires
the optimal bitrate for each video session to belong to its video level
set. This problem can be used to both compute bandwidth slices
in the case of the BR approach and to compute video bitrates to
guide video clients in the case of the BG approach. The second, the
Continuous Video Quality fair assignment, in which the bandwidth
slice size bn allocated to the n-th video session can assume any real
value between the minimum bitrate and the maximum bitrate of the
video level set, i.e. bn ∈ [min{Ln},max{Ln}]. This optimization
problem will be used only in the case of the BR approach to
compute bandwidth slices size. In the following we formulate and
briefly discuss the two optimization problems.

PROBLEM 1. Discrete Video Quality fair assignment

Maximize
[
minln∈Ln Un(ln)

]
Subject to ∑

N

n=1
ln ≤C. (1)

For each active video session n a bitrate ln belonging to the video
level set Ln is computed. The constraint imposes that the sum of
the bitrates is not higher than the link capacity.

PROBLEM 2. Continuous Video Quality fair assignment

Maximize
[
minbn∈RUn(bn)

]
Subject to ∑

N

n=1
bn ≤C,

min{Ln} ≤ bn ≤max{Ln}
(2)

Here, the utility function Un(·) is a continuous function mapping
the allocated bandwidth bn to the corresponding video quality.

Both the optimization problems (1) and (2) can be solved with a
progressive filling approach [2], by starting with all the components
in the solution vector being equal to the lowest bitrates and growing
all solutions together at the same pace, until either the link capacity
limit is hit or all the video sessions have been assigned with the
maximum bitrate. In the case of (1) one of the active video
sessions is selected at each step and its video level is increased
by 1. This procedure requires a criterion to select the next video
session to increase at each step. We have resorted to the heuristic
of selecting the video session whose level increase maximizes the
video quality increment. In the case of (2), instead, a much more
efficient approach can be taken: it can be shown that the problem
corresponds to finding the root of a univariate equation that can be
solved efficiently.

Video Quality Measurement. In order to solve the optimization
problems (1) and (2) we need the mappings Un(·) and Un(·) for

Video Representation SSIM
Level li Resolution ri 720p 1080p 2160p
400 kbps 640x360 0.931 0.892 0.833
700 kbps 854x480 0.953 0.924 0.851
1000 kbps 1280x720 0.998 0.977 0.898
1400 kbps 1280x720 1 0.985 0.907
2000 kbps 1920x1080 - 1 0.927
4500 kbps 2560x1440 - - 0.980
8000 kbps 3840x2160 - - 1

Table 1: SSIM for the video Big Buck Bunny with respect to
three different reference video resolutions

each video session n. They are generated off-line by means of
the Structural SIMilarity (SSIM) index, which is employed as an
estimate of the video quality [23].

The SSIM is an objective reference-based method to evaluate
the quality of an image, which correlates well with the human
perception and also allows an efficient computation. In the case
of videos the SSIM is computed as the average SSIM over all the
video frames.

We define the reference video as the best available video repre-
sentation of that video clip at the client screen resolution. Thus,
given the client resolution, the reference video is chosen from the
video level set as the representation with the same resolution and
the highest bitrate. Let us consider a video clip encoded into a
number of representations, each of them characterized by a bitrate
li and a resolution ri. We denote with r̂ the reference resolution.
The SSIM of each representation is computed by comparison
with the reference video. If the representation to be evaluated
has a resolution ri lower than r̂, it is upscaled to r̂ before being
compared. The upscaling is motivated by the fact that the video
player also upscales the decoded video to the device resolution2

when rendering the video during playback.
As a concrete example, Figure 4 shows how the SSIM is com-

puted for a video representation with li = 300kbps and ri =360p
when the resolution r̂ of the reference video, i.e. the client
resolution, is 720p.

The results obtained when evaluating the quality of the encoded
versions of the video Big Buck Bunny are reported in the Table 1
as an example. The last three columns of Table 1 show that
the same bitrate has three different SSIMs corresponding to the
three different resolutions of the reference video (720p, 1080p,
2160p). In the problem (2), where a continuous utility function
Un(·) is required, we have employed a linear interpolation between
consecutive bitrates to generate a continuous mapping from the
discrete one.

3. IMPLEMENTATION

3.1 Video Session Management
Figure 5 shows the workflow of a video session. A client starts

the video session by retrieving the playlist from the video server.
We suppose that, in addition to the video level set, the playlist also
carries the SSIM values for each video representation computed
as shown in Section 2.4. When a video session starts, the client
sends the set-up message to the NC, which carries the information
employed to compute the optimal bitrate distribution. Figure 5

2Our Video Quality Fairness policy differs in this aspect from the
one proposed in [10] that makes the restrictive assumption that for
each bitrate several representations with different resolutions are
available.
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also shows the information carried by the set-up message: the
video content URL, the video level set and its corresponding SSIM
extracted from the playlist. The NC stores this information in the
Active Flows Table.

The video client starts to download video segments as soon as
the set-up message is sent. Since the NC periodically executes
the Optimization Module with a sampling time Ts, the video flow
cannot be served with differentiated service until the next execution
of the Optimization Module. In order to avoid a delayed start-up,
the NC assigns the flow to the Arrival Slice, which is reserved
to newly arrived video sessions. Then, at most after Ts seconds,
the Optimization Module is executed, the video flow is removed
from the Arrival Slice and served with the differentiated service
according to the adopted network-assisted approach.

Finally, when the client decides to terminate the session, it sends
a tear-down message to the NC, which removes it from the Active
Flows Table at the next iteration of the Optimization Module.

3.2 The Flows Aggregation Strategy for BR
The Bandwidth Reservation (BR) approach ideally assigns to

each flow one slice whose size is computed by the Optimization
Module. However, the number K of available QoS queues on a
network interface is usually limited between 4 and 10 [24], which
is in general much lower than the number N of concurrent video
sessions.

Hence, if K <N, it is necessary to use a flow aggregation strategy
grouping the N video flows into K slices to implement the BR
approach with some approximation.

We have designed and tested two strategies, both exploiting
the fairness property of the video flows provided by the TCP. In
fact, if flows with similar video bitrate are assigned to the same
slice, TCP fairness will guarantee that, with some approximation,
each of the flows will obtain a bandwidth close to the one set by
the Optimization Module. In the following we describe the two
proposed strategies.

Quantized strategy. Each flow is mapped to one of the K
slices through a quantization process. Then, each group of flows
is assigned with a slice whose size is equal to the sum of the video
bitrates belonging to the group.

In order to explain the proposed strategy, we give an example,
shown in Figure 6. Let us consider the case of N = 6 concurrent
video flows accessing a network with only K = 3 available queues
(slices). First, the ideal slice allocation is computed by solving
the optimization problem (1) (or (2)). Let us suppose that the

Optimal
Step 1:

Step 2:

Step 3:

Solution

Flows
Grouping

Slices
Update
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Figure 6: The Quantized aggregation strategy

optimal solution is l̄ = [500,600,1000,1200,1300,2000]kbps (first
row in Figure 6). The flows are then aggregated based on
the following quantization thresholds: {800,1400}. According
to such quantization, three groups of flows are created: g1 =
{500,600}, g2 = {1000,1200,1300} and g3 = {2000} (second row
in Figure 6). Finally, three slices equal to, respectively, 1100kbps,
3500kbps, and 2000kbps are created (third row in Figure 6).
Thanks to the TCP fairness, the flows in the first slice are expected
to obtain on average a bandwidth share equal to 550kbps, the
flows in the second slice 1166kbps, and the flow in the third slice
2000kbps, thus achieving an approximation of the optimal solution
l̄.

Weighted Proportional strategy. In this case all the video
sessions having the same resolution r ∈R are assigned to the same
slice. This approach has the advantage of not requiring to solve the
optimization problem. The channel capacity C is split based on the
following equation:

C = ∑
r∈R

αrNrb (3)

where Nr is the number of clients having a screen resolution equal
to r, αr is the weighting coefficient for the resolution r and b is
the unknown variable. Once b is computed by solving (3), the
slices sizes are set equal to αrNrb. The weighting coefficients
αr are computed through a linear regression of the video quality
functions. A safety mechanism is used to ensure that in the case
of a large number of sessions, all the flows are provided with at
least their lowest bitrates. Compared to Quantized, this strategy is
expected to be less accurate, but it is cheaper to be implemented and
allows for a higher scalability. In particular, since this strategy does
not require the solution of an optimization problem, the allocation
has a very low complexity. In the next Section we will quantify
the impact on performance of the approximation introduced by the
Weighted Proportional strategy with respect to the Quantization
strategy.

3.3 The Testbed Setup
The Video Control Plane has been implemented in the testbed

shown in Figure 7, where three Intel Core Duo machines running
Ubuntu 14.04 are connected through a Quanta SDN switch. The
client machine generates a configurable number of DASH video
flows by means of the TAPAS tool [8]. The server machine hosts
the Lighttpd HTTP server to send the video segments to the clients.
The controller machine hosts the Opendaylight Hydrogen Release
SDN Controller and the NC. The switch is a Quanta T1048-LB9,
with PicOS v2.6 OS and Open vSwitch 2.3.0 as software switching
stack. The bottleneck link is the GbE cable between the switch and
the client machine. Its capacity is shaped by means of the tc Linux
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tool. In the following we focus on the implementation of: 1) the
NC; 2) the TAPAS clients; 3) the video content encoding and the
SSIM evaluation.

Network Controller. The NC has been implemented through
two communicating HTTP servers, one hosted by the controller
machine and one hosted by the switch, as shown in Figure 7.
Both the servers have been written in Python. The HTTP server
hosted at the controller maintains the Active Flows Table, executes
the Optimization Module in a Python thread, and establishes
communication pipes through JSON APIs. In particular, two pipes
are handled by the HTTP server: 1) the first with the video clients,
which has the task of receiving the set-up and tear-down messages
from the clients and send them the selected bitrates; 2) the second
with the HTTP server at the SDN switch to create, manage, and
delete QoS queues. The HTTP server running on the switch
maintains the Queue Table and manages the QoS queues through
the Open vSwitch 2.3.0 APIs. A slice is generated by creating
a dedicated queue on the network interface. The slice bitrate
computed by the Optimization Module is set on the corresponding
queue as the minimum guaranteed rate for the flows assigned
to it. The employed switch allows to create 8 queues on the
Ethernet interface, 7 of which dedicated to the video slices and
one to the Arrival Slice. The Optimization thread employs the
communication pipes to perform three actions: 1) in the case BG or
BG+BR strategies are used, it communicates the selected bitrates
to the clients; 2) it handles Openflow rules; 3) it manages the slices
size.

The Arrival Slice size is dynamically set at each execution of the
Optimization Module based on a periodically updated measure of
the video traffic arrival statistics. In particular, at each sampling
time kTs the arrival rate of video flows λ̂ (kTs) is estimated with
an EWMA filter and the Arrival Slice is set equal to Tsbminλ̂ (kTs),
where bmin is the minimum bandwidth we want to guarantee to each
video flow during the start-up phase.

TAPAS clients. The client machine employs TAPAS (Tool
for rApid Prototyping of Adaptive Streaming control algorithms)
[8] to generate the video sessions. TAPAS is an open-source
video client supporting DASH and HLS written in Python that
allows to easily design and carry out experimental performance
evaluations of adaptive streaming controllers. The following client-
side algorithms, described in Section 2.3, have been implemented
using TAPAS: Elastic, PANDA, Conventional, and the Thin Client
for the Bitrate Guidance case. In order to run several (up to 50)
concurrent video clients on the same client machine, we employ
a TAPAS feature that allows to disable video segments decoding.
When this feature is used, the obtained playout buffer dynamics is
exactly the same that would be obtained if the video segment had
been decoded, but with the advantage of remarkably decreasing the
CPU and memory usage [8].
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Video Content. The video content has been encoded with the
H.264 codec with a frame rate equal to 30 fps. The segment size
has been fixed to 4 seconds.

The SSIM has been computed through the Matlab script released
by the SSIM authors.

Finally, we have added a safety margin of 15% to the nominal
bitrates when running the optimization in order to take into account
the mismatch between the nominal bitrate reported in the video
playlists and the real encoded bitrate.

4. EXPERIMENTAL RESULTS

4.1 The Scenario
In this Section we describe the scenario considered in our

experimental evaluation. The video catalog is composed of three
videos: Big Buck Bunny3, Sintel4 and Tears of Steel5. We have
considered three classes of client devices, whose screen resolutions
are 720p, 1080p, and 2160p. The measured SSIM are shown in
Figure 8.

Each run is identified by a workload and has a duration of
900s. A workload defines for each video session of the run:
1) the starting time, which is generated by a Poisson arrival process
with parameter λ ; 2) the video, which is chosen from the video
catalog according to a discrete uniform distribution; 3) the device
resolution, which is chosen from the set of client resolutions
according to a discrete uniform distribution.

In order to generate a configurable link load we have employed
the following strategy. The duration of all the video sessions has
been set to D = 300s. As a consequence, the run is split in two
phases as shown in Figure 9. In the first one, lasting D seconds,
there are only flow arrivals and no departures; thus, in this phase
the number of active sessions grows with an average pace of λ .
Then, during the second phase the average arrival rate matches the
average departure rate and – as a consequence – the average number
of active sessions keeps to N = λD. During this phase the average
bandwidth fair share for each flow is C/(λD)Mbps. By keeping C
fixed and setting different values of λ , we are able to set the link
load for each workload.

Throughout all the experimental evaluation we have set the link
capacity C equal to 50Mbps. The minimum guaranteed bandwidth
bmin of the Arrival Slice has been set equal to 1000kbps. The
Optimization Module sampling time Ts, unless otherwise specified,

3http://distribution.bbb3d.renderfarming.net/video/mp4/bbb_
sunflower_2160p_30fps_normal.mp4
4https://download.blender.org/durian/movies/Sintel.2010.4k.mkv
5http://ftp.nluug.nl/pub/graphics/blender/demo/movies/ToS/
tearsofsteel_4k.mov
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Figure 8: Measured SSIM for the considered videos and client resolutions

has been set to 30s (the effect of Ts on performance is separately
assessed in Section 4.3.4).

We have employed the following quantization thresholds for the
Quantized Bandwidth Reservation:

{1200,1500,1800,2100,2500,5000}kbps

Finally, in the Weighted Proportional Bandwidth Reservation strat-
egy the following coefficients have been employed: α720p = 1,
α1080p = 1.4, and α2160p = 4.7.

4.2 The Metrics
In order to compare the performance of the investigated strate-

gies, we have evaluated the following metrics in each run.

RMSE. The Root Mean Squared Error is computed as the root
of the average squared error between the optimal SSIM for the n-
th user SSIM?

n, which is set by the Optimization Module, and the
corresponding measured SSIM, SSIMn.

RMSE =

√√√√ 1
N

N

∑
n=1

(SSIMn−SSIM?
n)

2

This metric measures the accuracy of the network-assisted ap-
proach in enforcing the optimal allocation according to the man-
agement policy. Thus, since we enforce a Video Quality Fair
allocation, the lower the RMSE the higher the achieved fairness.

Switching Frequency. It is computed as the average number
of video bitrate switches in a second (measured in Hz). It has been
shown that the switching frequency negatively affects the QoE only
if it is higher than a threshold, which is on the scale of 0.1 Hz [12,
18].

Download Rate. It is measured by the client as the downloaded
bytes in a given time interval.

We do not report the rebuffering ratio in the results since it
was negligible (less than 0.5%) in all the experiments. This is
arguably due to the fact that the lowest bandwidth fair share tested
in the experiments is about 1.4Mbps, which is much higher than
the lowest bitrate for each video [11].

4.3 Results
In this section we describe the results obtained by the considered

network-assisted approaches shown in Table 2.

4.3.1 General performance
In this Section we compare the overall performance achieved by

the considered strategies. The case in which no Video Control
Plane is used is labeled as baseline and is employed as a term
of comparison. In the case of baseline and BR the client-side

Symbol Network-assisted approach
BRQ Quantized Bandwidth Reservation

BRWP Weighted Proportional Bandwidth Reservation
BG Bitrate Guidance

BG+BR Hybrid Bitrate Guidance and Bandwidth Reservation

Table 2: Considered network-assisted approaches

algorithm Elastic has been employed (the impact of the client-side
algorithm is separately investigated in Section 4.3.2).

First of all, we evaluate the effectiveness of the considered
network-assisted strategies in enforcing the Video Quality Fairness
management policy. Towards this end, we consider a single run
corresponding to an arrival rate λ = 0.08 (runs with a different
arrival rate exhibit similar qualitative behavior). Figure 10 (a)
and (b) show the complementary CDFs (CCDF) of the download
rate and SSIM broken down by video client resolution. Let us
consider the CCDFs of the download rate, shown in Figure 10 (a).
In the baseline case the median value is roughly equal to 1.7Mbps
regardless of the client resolution. On the contrary, all the con-
sidered network-assisted approaches are able to provide a median
download rate that depends on the resolution. In particular, the
2160p flows obtain a higher median bandwidth share with respect
to the baseline case which does not provide service differentiation.
This occurs, as expected, at the expense of the flows with smaller
resolutions. Let us now consider Figure 10 (b) to check the impact
of service differentiation on the obtained SSIM. The baseline case
provides users with 720p screens a SSIM with a median higher
than 0.99, but it heavily penalizes 2160p users which achieve
a median SSIM of around 0.905. On the other hand, all the
considered network-assisted approaches are able to provide a fair
Video Quality across different users. Moreover, Figure 10 (b)
shows that the BR approach provides the best SSIM with respect
to the other considered approaches. In particular, 40% of the
2160p flows experience a SSIM higher than 0.95 in the case of BR
whereas BG and BG+BR obtain a SSIM higher than 0.925. This
improvement is due to the higher download rate achieved by BR.

Let us now consider Figure 11 that shows the measured RMSE
for several arrival rates λ . The figure shows that all the network-
assisted approaches achieve a lower RMSE compared to the base-
line case. The baseline provides an RMSE higher than 0.045 for
all the link loads, whereas all the network-assisted strategies are
in general able to keep the RMSE below 0.025. The BG and
BG+BR approaches outperform both the BR approaches. Adding
bandwidth reservation to bitrate guidance (BG+BR) does not offer
a clear advantage with respect to the BG strategy. The BRQ
is slightly more accurate in actuating the Video Control Plane
decisions with respect to the BRWP strategy due to the higher
granularity of its slicing mechanism. The loss of accuracy exhibited
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Figure 10: Complementary CDFs of the per-resolution download rate and SSIM when λ = 0.08
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Figure 11: RMSE obtained by the considered network-assisted
approaches as the arrival rate λ varies.

by BRWP is balanced by its lower implementation costs. Finally,
the performances of all the investigated strategies are insensitive to
the link load.

To get a further insight, we compare the video bitrate dynamics
of corresponding video sessions when using the same workload for
all the considered approaches. As an example, Figure 13 shows
the 40-th and 45-th video session in the case of λ = 0.1. The
figure shows that the BR strategies provoke several switches due
to the client-side adaptation. On the other hand, BG and BG+BR
provoke less switches since the video bitrate is directly set by the
Optimization Module.

Figure 12 shows measured the Switching Frequency as a func-
tion of the arrival rate λ . The figure confirms that Bandwidth Reser-
vation increases the Switching Frequency. In particular, both the
bandwidth reservation strategies provide Switching Frequencies up
to three times higher than the ones of BG and BG+BR. However,
it is important to notice that even the highest measured Switching
Frequency, i.e. 0.03Hz, does not significantly affect the perceived
QoE [18].
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Figure 12: Switching Frequency of the investigated network-
assisted approaches as the link load varies.

Figure 14 shows a scatter plot which clearly represents the
existing trade-off between the Video Quality Fairness, measured
through the RMSE, and the video quality expressed in terms of
SSIM.

The higher RMSE shown by the baseline corresponds to a SSIM
between 0.93 and 0.95, whereas the SSIM of the network-assisted
approaches is in the range between 0.91 and 0.94. Thus, we can
conclude that with the proposed management policy the Video
Quality Fairness is obtained at the expense of the average Video
Quality. This is an unavoidable trade-off in resource allocation
problems that goes under the name of the “price of fairness” [3].

Summary: All the network-assisted approaches are able to
provide a fair Video Quality across the video sessions compared
to the baseline case in which no VCP is employed. Moreover, VCP
trades off a higher Video Quality Fairness for lower average video
quality. Bitrate guidance provides the best results in terms of Video
Quality Fairness, whereas bandwidth reservation slightly improves
the video quality but with a higher Switching Frequency.
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Figure 13: Video bitrate dynamics of two flows of the run with λ = 0.1 with the considered approaches
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Figure 14: The trade-off between Video Quality Fairness
(RMSE) and average video quality (SSIM)

4.3.2 The impact of the client-side algorithm on the
Bandwidth Reservation approach

We now investigate the impact of the considered client-side
algorithms Conventional, PANDA, and Elastic on the performance
of the BR approach. We consider the performance of the client-side
algorithms in the baseline case where no VCP is used as a term of
comparison. Figure 15 (a) shows the RMSE when the arrival rate
λ is set to 0.08. The RMSE is insensitive to the employed client-
side algorithm regardless the VCP is used or not. However, other
QoE-related parameters are impacted by it.

To the purpose, let us consider the CCDFs of the download rate
and the SSIM video sessions (λ = 0.08). In Figure 16 we show
only the case of 2160p sessions since performance differences are
more remarkable. The figure shows the complementary CDFs
obtained with BG as a term of comparison since it does not
employ a client side bitrate adaptation (see Section 2). Let us
focus on Figure 16 (a). The first important difference is that
when Conventional and Elastic are used with the BR strategy they
always provide a higher bandwidth share to 2160p video sessions
with respect to the case in which BG is used. In particular, the
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Figure 15: Comparison of the performance achieved with the
client-side algorithms Conventional, PANDA, and Elastic in the
case of the baseline and the BR strategy (λ = 0.08).

median for Elastic, Conventional, and BG are roughly 3 Mbps, 2.8
Mbps, and 2.3 Mbps respectively. On the other hand, the advantage
provided by BR is not exploited by PANDA which provides a lower
bandwidth share to 2160p users with respect to BG. This issue is
due to the fact that PANDA is slow in tracking the time-varying
available bandwidth [7]. This performance loss is reflected in the
obtained SSIM shown in Figure 16 (b). In particular, even though
the medians of SSIM are roughly equal due to the fact that the
measured RMSE are similar (Figure 15 (a)), it is clear that Elastic
provides the best results whereas PANDA obtains the same SSIM
as BG.

To conclude, we analyze the performance in terms of Switch-
ing Frequency obtained by the considered client-side algorithm.
Figure 15 (b) shows that Conventional has the worst performance
both with the baseline and the BR due to its very aggressive bitrate
adaptation strategy. With the BR it reaches 0.08Hz, i.e. roughly
one switch each 3 video segments. PANDA and Elastic, instead,
provide similar results and show a slight increase of the switching
frequency due to the BR.

Summary: The Video Quality Fairness, measured through the
RMSE, is insensitive to the client-side algorithm employed in con-
junction with the BR strategy. However, Elastic, and Conventional
provide higher SSIM compared to PANDA. Finally, Conventional
provokes a high switching frequency that might be detrimental for
QoE.



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2160p

Download Rate [Mbps]

C
C

D
F

 

 

Elastic

PANDA

Conv.

BG

(a) Download rate

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2160p

SSIM

C
C

D
F

 

 

Elastic

PANDA

Conv.

BG

(b) SSIM

Figure 16: Complementary CDFs of download rate and SSIM
with different client-side algorithms

4.3.3 The impact of per-flow queuing
In this paragraph we investigate the impact of the grouping

strategy to implement the slicing in the BR approach. Since the
number of queues is limited to 8 in our testbed, the only way to do
it is to consider a different scenario where a number of flows lower
than 8 is generated. In this way we can dedicate a single slice to
each flow, without using the flow aggregation strategies presented
in Section 3 in the case of the BR and the BG+BR approaches. In
this scenario 5 flows are generated according to a Poisson arrival
process. In order to consider several link loads, the link capacity
has been set to 8, 9 and 10Mbps, corresponding to a bandwidth fair
share of 1.6, 1.8, and 2 Mbps respectively.

In Figure 17 (a) and (b) the RMSE and the Switching Frequency
are shown. If on one hand the RMSE in the baseline case
is comparable to the one obtained in the other scenario (see
Figure 11), on the other hand all the network-assisted approaches
remarkably improve the RMSE compared to the case where flow
aggregation strategies are used to implement bandwidth slicing. In
particular, the RMSE obtained by BG and the BG+BR is close to
0, whereas BR provides a RMSE below 0.01.

Similar considerations hold for the Switching Frequency. The
baseline shows similar behavior compared to the other scenario
(around 0.01 Hz), whereas BG and BG+BR are able to keep it
below 0.005 Hz. Although BR obtains the worst performance, it
provides an improvement with respect to the other scenario. This
improvement is due to the fact that in this scenario a per-flow
queuing is used and thus video sessions do not share the same slice.

Summary: This section shows that Video Quality Fairness and
Switching Frequency is improved when network-assisted strategies
can be implemented with per-flow queuing.
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Figure 17: RMSE and Switching Frequency in the case of 5
video flows with per-flow queuing
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4.3.4 The impact of the sampling time
In this Section we assess the impact of the sampling time Ts,

at which the optimization is executed, on the performance of
the VCP. In Figure 18 the RMSE obtained with BR, BG and
BG+BR strategies is compared when Ts is set, respectively, to
10, 30 and 60s. It is worth noting that considering sampling
times less than the video segment size is not meaningful since
client-side adaptation algorithms are actuated on a per-segment
basis. Figure 18 shows that the RMSE increases as the sampling
time Ts increases, indicating that Video Quality Fairness degrades
when large sampling times are used. The Switching Frequency is
negligibly affected by Ts and due to space constraints is not shown.

4.3.5 Discussion
We conclude this Section by briefly discussing the overall

characteristics of the considered strategies in the light of the
experimental results presented above. For each of the considered
approaches Table 3 provides a qualitative summary detailing the



Control Function. Performance

Approach Control
Comm.

Bandwidth
Slicing VQF

Average
Video

Quality
Baseline - - Poor Very good

BR - Yes Good Client
dependent

BG NC→Client - Very good Quite Good
BG+BR NC→Client Yes Very good Quite Good

Table 3: Summary of the control functionalities and perfor-
mance of the considered network-assisted approaches

features of the considered approaches along with the corresponding
obtained performances.

BR requires no control communication after establishing the
video session, which is beneficial in terms of scalability in the
presence of a high number of clients. Moreover, no information
on the network state is exposed to the clients, which independently
select the video bitrate according to the client-side adaptation
algorithm. At the same time, a modest control effort due to
bandwidth slices management has to be taken into account. A
drawback of this strategy is that it is sensitive to the client-
side algorithm employed to select the bitrate, which can impact
QoE-related metrics such as the Video Quality and the switching
frequency.

On the other side, BG provides the best performance in terms
of accuracy in enforcing the management policy at the expense
of a higher amount of communication (a message to each active
video client is sent each Ts seconds) and exposure of information
reflecting the network state (i.e. the suggested bitrate). Even
though reaching the client from the network can be challenging
due to the fact that middleboxes have to be traversed, today such
information exchange is made possible by employing WebRTC
data channels6. Differently from BR, BG requires mutual trust
between network and clients. Malicious clients, in fact, could
obtain a higher bandwidth share by ignoring the suggested bitrate
and selecting a higher one.

Finally, BG+BR provides no performance advantage compared
to the BG strategy despite the higher control effort.

5. RELATED WORK
In the following we provide an overview of the literature focus-

ing on the use of network-assisted approaches for the delivery of
video content.

Bandwidth Reservation. The virtualization of the ISPs access
infrastructure using open APIs supported through SDN is proposed
in [21]. Content providers can programmatically provision capacity
to user devices to guarantee QoE by employing network resources
slicing. Moreover, an algorithm is proposed for optimally allo-
cating network resources, leveraging bulk transfer time elasticity
and access path space diversity. In [13] an SDN-based application-
aware bandwidth allocation approach is used to maximize the QoE
of YouTube flows. In [5] a control architecture and a reference
implementation of a network control plane for video flows is
proposed. The reference implementation is evaluated through
numerical simulations. In [16] a new QoE metric is introduced,
which takes into account the video resolution and the distance of
the user from the screen. Based on this metric, a QoE max-min
fairness problem is formulated to enforce a per-flow bandwidth
allocation in the Home Network.

Bitrate Guidance. In [10] an OpenFlow-assisted QoE Fairness

6http://www.w3.org/TR/webrtc/

Framework is proposed to fairly maximize the QoE of multiple
competing video clients in a Home Access Network. Authors
provide a proof-of-concept implementation considering a small
number of concurrent flows. In [14] authors propose to place a
HTTP proxy server between client and server (in the gateway or
any another network device) in order to drive the bitrate adaptation
of the players by rewriting their HTTP requests. An analytical
model in the form of a Markov process is employed at the proxy
to compute the bitrate for each player. The proposed model
is experimentally validated. In [19] a rate adaptation algorithm
is proposed to achieve fairness in a multi-client setting. To
the purpose, authors propose to employ an in-network system
of coordination proxies to facilitate fair resource sharing among
clients. The in-network components provide the clients with
feedback, whereas the bitrate adaptation is performed by the
clients. The performance evaluation is carried out through ns-2
simulations.

C3. In [9] authors propose C3, a centralized control platform de-
signed to optimize video delivery. The platform enables per-CDN
real-time monitoring of the delivered video QoE, the prediction of
expected performance and the selection of the CDN and the video
bitrate. The bitrate selection in C3 is enforced by a centralized
Decision Layer, which is aware of the performance of the transport
networks thanks to the performance prediction made by an upper
layer. The Decision Layer is also aware of the current client state
thanks to the feedback provided by the client (Thin Client) on a
second-level timescale (between 5 and 20s). It is worth to notice
that such a control plane is made possible by the use of a large
number of decision servers, which are hosted in geographically
distributed front-end datacenters as close to the clients as possible.

Our contributions. Both the approaches considered in this
paper, the Bandwidth Reservation (BR) and the Bitrate Guidance
(BG) have been separately studied in the literature. At the best
of authors knowledge, a study comparing these two strategies in
the same scenario was still missing. Moreover, concerning the BR
approach we have identified two limitations in the published stud-
ies: 1) only Home Network scenarios with very few video flows
(not more than 6) sharing a common channel have been carried
out; 2) the impact of the client-side algorithms on performance was
not exposed in previous studies. This paper makes contributions
in both the directions, by proposing a Video Control Plane for
a more complex network setting and comparing the BR and BG
approaches.

6. CONCLUSIONS
In this work we have experimentally investigated several network-

assisted strategies to actuate the decisions of a centralized Video
Control Plane (VCP) whose goal is to provide Video Quality
Fairness (VQF) to concurrent video streaming sessions sharing a
common bottleneck. The impact of client-side adaptation algo-
rithms has also been investigated. As a general result, we have
found that all the considered network-assisted approaches provide
a remarkable improvement in terms of obtained VQF compared
to the case in which no VCP is employed. Bitrate Guidance
provides the best results in terms of VQF, whereas Bandwidth
Reservation might improve the average video quality depending on
the client-side algorithm. In particular, we have found that the VQF
is not impacted by client-side algorithms, but other QoE related
metrics, i.e. average video quality and the switching frequency, are
affected. In particular, Elastic, and Conventional provide a higher
average video quality compared to PANDA, whereas Conventional
is affected by a large switching frequency. Finally, we have shown



that when per-flow queuing is used, performance in terms of VQF
and switching frequency is improved. Extensions of this work
will address the design and evaluation of VCPs in multi-bottleneck
network scenarios.
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