Using MPEG DASH SRD for zoomable and navigable video

Lucia D’Acunto
TNO
Anna van Buerenplein 1

The Hague, The Netherlands

lucia.dacunto@tno.nl

Emmanuel Thomas
TNO
Anna van Buerenplein 1

The Hague, The Netherlands
emmanuel.thomas@tno.nl

ABSTRACT

This paper presents a video streaming client implementa-
tion that makes use of the Spatial Relationship Description
(SRD) feature of the MPEG-DASH standard, to provide a
zoomable and navigable video to an end user. SRD allows a
video streaming client to request spatial subparts of a par-
ticular video stream, which might be available in multiple
resolutions.

The paper outlines the design choices enabling the player
to render DASH content supporting the SRD feature, such
as (i) identifying the total amount of resolution layers and
selecting the most appropriate one for the user’s current
selection (pan or zoom), and (ii) enabling a seamless switch
between spatial subparts. Doing so, we provide practical
implementation guidelines for applications and services that
may want to use the SRD feature of MPEG DASH to provide
zoomable and navigable video to end users.

The video streaming client is implemented in JavaScript
and extends dash.js, an MPEG DASH reference client im-

plementation.

CCS Concepts

eInformation systems — Multimedia streaming;

Keywords

video, mobile video, streaming, javascript, dash.js, MPEG-
DASH, SRD, tiled streaming, standards

1. INTRODUCTION

Triggered by the advent of higher resolution video (4K, 8K
and beyond) and the increase in usage of mobile devices for
video consumption, a new feature of the MPEG DASH stan-
dard, referred to as Spatial Relationship Description (SRD)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys’16 May 10-13, 2016, Klagenfurt, Austria

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4297-1/16/05.

DOL: http://dx.doi.org/10.1145/2910017.2910634

Jorrit van den Berg
TNO
Anna van Buerenplein 1

The Hague, The Netherlands
jorrit.vandenberg@tno.nl

Omar Niamut
TNO
Anna van Buerenplein 1

The Hague, The Netherlands

omar.niamut@tno.nl

[4], has recently been published. The feature extends the
Media Presentation Description (MPD) specified in part 1
of MPEG DASH by describing spatial relationships between
associated pieces of video content. This provides DASH
clients with the possibility to select and retrieve only those
video streams at those resolutions that are relevant for the
users watching the video.

However, as it holds in general, MPEG DASH does not
provide information on client logic implementation of the
SRD feature. For example, it does not explicitly indicate
how many multiple resolution layers of the video stream are
offered, and how many spatial subparts are available at each
resolution layer. Similarly, there are no specific instructions
on how to enable a seamless switch among the related pieces
of video content.

In this paper, we provide practical guidelines on how a
client application can effectively use the SRD feature of the
MPEG DASH standard to provide zoomable and naviga-
ble video to end users. On the basis of these guidelines,
a video streaming client implementation of the SRD fea-
ture is proposed. The video streaming client is implemented
in JavaScript and extends dash.js, an MPEG DASH refer-
ence client implementation [1]. The source code of the video
streaming client, referred to as the SRD video player, is avail-
able at https://github.com/tnomedialab/dash-srd. js. By
providing implementation guidelines and source code, we
ailm at aiding the adoption of this technology within the
media industry. As such, we also expect that our work will
provide beneficial input for industry bodies supporting the
adoption of the MPEG DASH standard.

2. BACKGROUND

In this section, we first describe the concept behind zoomable
and navigable video. Then, we outline the salient character-
istics of the SRD feature. Finally, we touch upon dash.js, a
reference implementation of the MPEG DASH player.

2.1 Tiled Streaming

The application of zoomable and navigable video sees its
roots in the concept of interactive region-of-interest (ROI)
video streaming. While several approaches to interactive
ROI streaming exist, the approach known as tiled streaming
[6] offers the best compromise between bandwidth, storage,
processing and device requirements, in particular for large-

retrieving

Figure 1: Tiled streaming: retrieving and rendering
the ROI.

scale deployments. Essentially, “tiling” refers to partitioning
a video stream into a number of independently decodable
video streams or “tiles”. The idea behind tiled streaming is
that, if a user is only interested in viewing a certain ROI, the
video player does not need to retrieve the full view of the
video stream, but only those “tiles” corresponding to the
ROI selected by the user, hence saving bandwidth in the
process (Figure 1). For zoomable video, multiple resolution
layers are created from the original source video. Each addi-
tional layer originates from a lower resolution version of the
original video frame, tiled into a grid with fewer tiles. This
multi-resolution tiling increases the quality of user-defined
zooming on tiles. The nature of tiled streaming makes it
particularly useful within the context of Adaptive Bitrate
Streaming, where the content is typically made available at
multiple bitrates and resolutions. When a user selects a
certain ROI in the video, e.g. with zoom or navigation com-
mands, the player can decide to download the tiles making
up the ROI at a higher resolution, therefore increasing the
level of detail in the video as shown to the user.

2.2 MPEG-DASH SRD

DASH is the MPEG standard for Adaptive Streaming
over HTTP [5]. The standard defines a Media Presenta-
tion Description (MPD), namely an XML manifest file that
describes the media content available (AdaptationSets) in-
cluding its alternate versions (Representations) exhibiting
different bitrates, resolutions, or codecs.

MPEG has recently standardised a new feature of the
MPD, called Spatial Relationship Description (SRD) [4],
which associates spatial information with the media content
contained in an MPD. Specifically, each content item in-
cluded in the MPD might be enhanced with an SRD, which
is composed of the following parameters: source_id, ob-

ject_x, object_y, object_width, object_height, total_width,

total_height and spatial_set_id. The source_id identi-
fies a particular content item in the stream (e.g. one TV pro-
gram); object_x, object_y, object_width, object_height
provide the position and size of a subpart of this particular
content (i.e. a tile for tiled streaming) within a coordinate
system; total_width and total_height represent the size of
this coordinate system; the spatial_set_id is an identifier
for a (sub)group of the subparts relating to the particular
content (e.g. all spatial subparts belonging to a given reso-
lution layer). The first five SRD parameters are mandatory,
total_width and total_height are conditional mandatory

DASH SRD manifest
object for specifictile

@ > Dash.js
instance 1

DASH SRD /
manifest xml i
/ @ 3 : Dash.js
instance 2

—— | ——> | DASH-SRD.JS \
p— Dash.js
\ @ instance 3
Dash.js
% instance 4

Figure 2: Architecture of the SRD player. The SRD
player is implemented as a wrapper around dash.js:
for each spatial subpart that needs to be displayed
to the user, a new instance of the dash.js player is
created.

(meaning that they are required to be present only under
certain circumstances) and spatial_set_id is optional. For
more details see [4].

2.3 dash.js

dash.js is a MPEG DASH reference client implementation
in JavaScript. Its development was initiated by the DASH
Industry Forum (DASH-IF) with the aim of establishing “a
production quality framework for building video and audio
players that play back MPEG-DASH content” [1]. The client
is OpenSource and publicly available on GitHub under a
BSD-3 license. Furthermore, this client also implements best
practices in the playback of MPEG DASH content provided
by DASH-IF [3]. Given the features of the player and the
goal of the dash.js project, we have chosen to implement our
SRD video player as a wrapper around dash.js (Figure 2).

3. DESIGN AND IMPLEMENTATION OF THE

SRD PLAYER
3.1 Motivation and Objectives

SRD was designed to enable a variety of use cases and
as such it has a flexible blueprint. However, the MPEG
DASH specification does not provide reference client logic
implementation guidelines for the features it contains, and
this also holds true for SRD. In this section, we present the
design choices we have made to use SRD in the context of
zoomable and navigable video.

3.2 Identifying Resolution Layers

In order to handle video content offered at multiple reso-
lutions, the first step is to determine how many resolution
layers there are. Then, the spatial subparts belonging to
each resolution layer need to be identified. The number of
subparts per resolution layers is not explicitly provided in
the SRD feature and the client needs to infer it from the
SRD parameters. However, if only the mandatory parame-
ters are present, the client will need to parse the entire MPD,
compare the sizes and positions of all the spatial subparts,
and then infer the total number of resolution layers and the
resolution layer to which a specific subpart belongs to. A ba-
sic assumption is that all the subparts at a given resolution
layers have the same size; in an operational environment,

24 resolution layer
spatial_set_id =1

1% resolution layer
spatial set _id = 0

3" resolution layer
spatial_set_id = 2

Figure 3: Identifying resolution layers using the pa-
rameter spatial_set_id.

content providers may deviate from this assumption. The
process of determining the number of subparts per resolu-
tion layer can be readily simplified by providing the optional
and conditional mandatory SRD parameters to all content
items in the MPD. These parameters specify the total size
of the coordinate system and allow for grouping all the spa-
tial subparts belonging to the same resolution layer under
the same spatial_set_id. Furthermore, a special semantic
can be given to the value of the spatial_set_id in order
to order the different resolution layers. Specifically, the spa-
tial (sub)parts belonging to the lowest resolution layer will
have the value of the spatial_set_id set to 0, those be-
longing to the second resolution layer will have value 1 and
so on (Figure 3). The total number of resolution layers can
then be easily computed, as it corresponds to 1 + the high-
est spatial_set_id for a given content (identified by the
parameter source_id).

To summarize, the following design choices have been made
with regards to identifying resolution layers:

e Both mandatory and optional SRD parameters are al-
ways used;

e The parameter spatial_set_id identifies all subparts
belonging to the same resolution layer, and is used
to order the resolution layers from the lowest to the
highest, the lowest starting from value 0.

It is important to notice that these design choices need
to be supported by the content provider as well as by the
DASH client for the mechanism described above to work.

3.3 Switching Among Spatial Subparts

Zoomable and navigable video applications typically will
require the client to frequently switch among spatial sub-
parts. To guarantee a good user experience when perform-
ing these actions, the player needs to implement a seamless
switch. A seamless switch means a gap-less transition in
both space and time from the originally presented spatial
content to the new one.

3.3.1 Seamless Switch in Space

To enable a seamless switch in space, the client must en-
sure that during the switch, some content keeps being dis-
played to the user.

For a zoom-in action, a new chunk of content needs to
be fetched corresponding to the selected region of interest
at a higher resolution. In our design, the client will upscale
the current stream and display it to the user, until the new
chunck of content has been retrieved, decoded, and made
available for rendering. This way, once the chunk of content

zoom

navigate

Figure 4: Seamless switch in space: the left column
shows a zoom action, while the right column a navi-
gation action. A corresponds to the situation before
the switch. B pictures the temporary state when
the original stream (in the right case combined with
the fallback layer) is displayed to the user in the
meantime that the new stream is being fetched. C
represents the situation after the switch has been
completed and the new stream is displayed to the
user.

corresponding to the higher resolution is fetched, it can be
readily displayed to the user with minimal disturbance (Fig-
ure 4). Note that this switch is visually similar to a regular
DASH switch between two Representations.

Enabling a similar seamless switch when the user navi-
gates to other regions of interest (panning) requires some ad-
ditional effort. In particular, these regions of interest might
be partially or completely outside of the current view being
displayed to the user. To support this scenario, the SRD
player always downloads the content in the first resolution
layer (which contains the full view of the scene) and down-
loads in parallel the content in the resolution layer currently
displayed to the user. In this way, a version of the content
from the first resolution layer scaled to the resolution of the
requested content can be temporarily displayed if needed,
hence avoiding a black screen effect. In the background, the
client still fetches the chunk of content corresponding to the
new region of interest requested by the user (Figure 4).

Always downloading the full view also serves the purpose
of bandwidth adaptation: when the available bandwidth is
not sufficient to stream the higher resolution content, the
client can immediately “fall back” to that resolution layer.
For this reason the first resolution layer is also referred to
as fallback layer.

Recapitulating, the design choices regarding the seamless
switch in space are:

e the “fallback layer” is always downloaded in parallel
with the resolution layer to be displayed; and

e the “fallback layer”, resized according to the resolution
layer of the content to be displayed, is being presented

to the user until the requested chunk of content has
been fetched.

In contrast to the case of the identification of the resolu-
tion layers, the above design choices only apply to the DASH
client’s behavior.

3.3.2 Seamless Switch in Time

When a spatial subpart is replaced by another one (or
more) spatial subpart(s), the client must ensure that the
timing of presentation of these new subparts is (i) aligned
with the time of the presentation of the current spatial sub-
part, as well as (ii) within the new subparts themselves.
DASH already offers support for the first aspect, by intro-
ducing so-called “Stream Access Points” in the video streams
[5]. The second aspect is intrinsic to tiled streaming applica-
tion and it requires the player to have frame-level control of
the video stream in order to guarantee that the playback of
the different spatial subparts is tightly synchronised. Cur-
rently, the HTML 5 specification does not explicitly offer
this functionality, but only specifies that the granularity of
access to the video stream shall be between the 15ms and
250ms [7]. Most browsers have chosen for 250ms, with the
exception of Mozilla Firefox which offers frame-level access
for videos with framerate not higher than 66frames/s [2].
This value defines the level of accuracy that synchronization
among video streams can achieve. With these limitations,
the player currently focuses on ensuring that:

e the functions starting the playback of the different spa-
tial subparts are called in parallel at the same moment;

e periodically, the different spatial subparts being dis-
played (if any) are resynced with the fallback layer as
reference.

As for the case of seamless switch in space, these design
choices only apply to the DASH client behavior.

4. DEMONSTRATION

In this section we describe the details of the demo that
will be given to the MMSys conference visitors.

4.1 Setup

Prior to the conference, tiled video content will be made
available at a webserver and at a local machine. Then, on
the basis of the video content, a DASH manifest file will
be created where the different video subparts are signalled
throught the SRD feature of DASH, as described in Section
3. A webpage with the SRD player will also be setup. This
webpage accepts a DASH manifest file as input and feeds it
to the SRD player.

At the conference, a laptop and several iPads will be made
available for visitors to interact with the zoomable and nav-
igable video content.

4.2 Content

For the purpose of the demo, we have collected our own
video material, tiled it and encoded at different qualities.

4.3 Interaction Opportunities for Visitors

After a brief introduction of the application and its archi-
tecture, visitors will be given the possibility to interact with

the tiled video content through the SRD player on the lap-
top and/or iPads. We aim at collecting visitors’ feedback on
their experience with the demo, in order to further improve
the SRD player.

5. CONCLUSIONS AND FUTURE WORK

In this paper, an implementation of a DASH client sup-
porting the SRD feature is presented. The specific use case
of zoomable and navigable video is addressed, and the de-
sign choices made to effectively use SRD for this applica-
tion are illustrated. In particular, a specific semantic for
the SRD parameter spatial_set_id has been introduced
to enable an optimal management of the various resolution
layers, and the presence of all SRD parameters is advocated.
In order to handle a seamless switch, the player makes use
of the “fallback layer”, i.e. the resolution layer relative to
the content representing the entire view of the video scene.
This paper makes the recommendation to have the client
always download the fallback layer while operating, to allow
seamless switches between spatial subparts of the content.
Finally, we do notice that frame-level access to the video
streams should be provided in the web browser API to im-
prove seamless switching in time.

Future work will be focused on raising awareness within
relevant standardization bodies (e.g. W3C) regarding frame-
level video controls as well as aiding the adpotion of MPEG
DASH and its SRD feature in the media industry (by means
of demonstrations to the public, for example).

6. ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions
of their colleagues, in particular Ray van Brandenburg, Os-
kar van Deventer and Arjen Veenhuizen, as well as the many
colleagues in MPEG DASH for the collaboration on the mat-
ter and their contributions to a hopefully successful and
widely deployed standard.

7. REFERENCES

[1] dash.js: A reference client implementation for the
playback of mpeg dash via javascript and compliant
browsers.
https://github.com/Dash-Industry-Forum /dash.js /wiki
Accessed: 2016-02-04.

[2] Fire timeupdate event less frequently than once per
frame.
https://bugzilla.mozilla.org/show_bug.cgi?id=571822
Accessed: 2016-02-12.

[3] DASH Industry Forum. “Guidelines for Implementation:
DASH-IF Interoperability Points”, 2015.

[4] ISO/IEC 23009-1:2014/Amd 2. “Spatial relationship
description, generalized URL parameters and other
extensions”, 2015.

[5] ISO/IEC JTC1/SC29/WG11 W13533. “MPEG DASH:
The Standard for Multimedia Streaming over the
Internet”, 2012.

[6] Niamut O., Prins M., van Brandenburg R., and
Havekes A. “Spatial tiling and streaming in an
immersive media delivery network”. Adjunct
Proceedings of FuroITV, 2011.

[7] W3C. “HTML5.1, Editor’s Draft, 17 February 2016”,
2016.

