
End-to-End DASH Platform including a Network-based and
Client-based Adaptive Quality Switching Module

David Gómez1, Fernando Boronat1, Mario Montagud1,2, Clara Luzón1
1Universitat Politècnica de València (UPV) – Campus de Gandia, Spain

Immersive Interactive Media (IIM) R&D
2Centrum Wiskunde & Informatica (CWI), The Netherlands

{dagomi@alumni., fboronat@dcom., mamontor@, clalual@epsg.}upv.es

ABSTRACT

This paper presents an end-to-end Dynamic Adaptive Streaming

over HTTP (DASH) platform, developed by using open-source

components. It includes and allows the configuration of all the

required steps along the end-to-end media delivery chain, from the
encoding, segmentation and storage of the media content at the

server side, to the delivery and adaptive consumption of the media

content at the client side. A key component of this platform is the

DASH client, developed using the GStreamer framework. It
includes a module with a novel adaptive algorithm for switching

between the available representations (i.e., qualities) of the media

content at the server side, based on the available bandwidth and

on internal conditions and features of the client (such as the buffer
occupancy level, the battery level, its charging state and the CPU

load). It also includes different modules to simulate specific

values for these parameters, and to visualize their values and the

value of the selected quality in real-time. A preliminary evaluation
has proved the satisfactory performance of the overall platform.

Finally, links to demo videos are provided to demonstrate the

satisfactory performance and capabilities of this platform.

CCS Concepts

• Information systems → Information systems applications →

Multimedia information systems → Multimedia streaming

Keywords

Adaptive Streaming; DASH; HTTP-based Adaptive Streaming

(HAS); GStreamer; QoS; QoE.

1. INTRODUCTION
Broadband media delivery is exponentially gaining momentum.
Consumers, wherever they are and whichever the device or access

technology they are using, demand high-quality media

experiences (e.g., in terms of high resolution, low start-up delays,

continuous playout, interaction features, trick mode support…).
To ensure these demands, the whole media delivery ecosystem

needs to be optimized.

Recently, a new wave of client-driven HTTP-based Adaptive

Streaming (HAS) solutions have been specified with the goal of
improving the adaptability and continuity of media playout, based

on the changing network conditions and on the capabilities,

resources and state of the consumption devices. Their main

advantages are adaptability, scalability, reliability, reachability

and cost efficiency. The basic concept of HAS solutions is to

provide multiple versions (aka representations) of the media
content (e.g., in different resolutions or bitrates) and chop each of

these versions into a sequence of (small) segments (e.g., with a

duration of 2s). These different segments can be decoded and

consumed independently of the other segments. In addition, an
index or manifest file is created, which contains the required

metadata information to describe the relationships between the

segments and the available representations.

Based on these resources, the client, by means of HTTP requests,
will firstly download the manifest file and, after that, will

dynamically decide which segment (of which representation) to

download in each moment, based on the information contained in

the manifest file and on its current specific context (e.g., available
bandwidth or BW). Typically, the client will select, for each

segment request, the highest quality possible to ensure the

continuity of the playout, according to the (changing) available

resources. A key aspect of HAS clients is the design of the
algorithm to adaptively determine which segment to download in

each iteration. It is commonly known as adaptation algorithm,

and its behavior has a direct influence on the system performance

and on the perceived Quality of Experience (QoE).

From the available HAS solutions, Dynamic Adaptive Streaming

over HTTP (DASH) [1] is highlighted, as it is a standard solution

specified by ISO/IEC MPEG [2], which has been adopted by TV

standards (e.g., in HbbTV [3]), by mobile broadcasting standards
(e.g., eMBMS [4]), and by popular media services. In [2], the

format of segments and the manifest file in DASH are specified.

In this case, the manifest file is an XML-based file, called Media

Presentation Description (MPD).

The existing DASH clients mostly monitor the network conditions

to adapt the quality switching process. Different works have

proposed adaptation algorithms to optimize this process (e.g., [5]).

Moreover, especially in mobile streaming scenarios, other
(variable) environmental conditions can play a key role in this

optimization process. For example, the works in [6] and in [7]

have taken into account the location of the devices to plan future

quality requests. Apart from the location of the device, the work
in [6] takes into account its speed and surrounding humidity.

Furthermore, the work in [8] proposes a system that leverages the

availability of sensing capabilities of mobile devices to reduce the

network load in situations in which non-optimal watching
conditions exist (by sensing the device shakiness and the ambient

noise) or users are not paying attention to the video watching

experience (by using the front-facing camera to integrate a face
detection and tracking functionality).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

MMSys’16, May 10–13, 2016, Klagenfurt, Austria.

ACM 978-1-4503-4297-1/16/05.

DOI: http://dx.doi.org/10.1145/2910017.2910638

Unlike the previous works which have extended existing DASH

clients, this paper focuses on both the server and client sides,
presenting an end-to-end DASH platform, developed by using

open-source components. This platform includes and allows the

configuration of all the steps along the end-to-end media delivery

chain, from the generation, encoding, segmentation and storage of
the media content, as well as the creation of the MPD, at the

server side, to the delivery and adaptive consumption of the media

content at the client side. A key component of this platform is the

DASH client, developed using the GStreamer framework [9],

which includes a module with an adaptive quality switching

algorithm. This algorithm takes into account key network-based

and client-based parameters (some of them not considered in other

works), such as the available BW and various internal parameters
of the client (e.g., buffer occupancy level, battery level, its

charging state and CPU load). Apart from the DASH player, the

client also includes a Graphical User Interface (GUI) with a

configuration module to set the allowable thresholds for these
parameters, a simulation module to dynamically force specific

values to these parameters, and a representation module that

allows a real-time visualization of these values and the selected

quality in text labels, overlays and graphs.

A preliminary evaluation proves the satisfactory performance of

the overall platform, when forcing specific values to the involved

parameters. Links to demo videos are also provided to show the

satisfactory performance and capabilities of this platform.

During the demo session, the attendees will be able to interact

with our platform, will be guided in its use, and will be able to

check how it performs in different situations. We also expect to

get valuable feedback about its applicability, usability, design
aspects and future functionalities.

2. END-TO-END DASH PLATFORM
This section describes the two main parts of the presented DASH

platform: the server side and the client side. An overview of the

platform and the HTTP-based communication process between
the two parts is shown in Figure 1.

2.1 Server Side
The server side comprises four main processes (summarized in

Figure 2). First, an input media file (whatever its format) is

encoded into the supported codecs (e.g., H.264 or H.265 for video
and AAC for audio) in DASH, in different representations, which

are then encapsulated in MP4 format. Second, the representations

are segmented. Third, the MPD is created.

The first three processes are automatically executed by running a
developed Python script, called DASH-Creator, which internally

makes use of:

 FFmpeg1: it is responsible of the encoding process. It

allows configuring the codec settings, Group of Picture

(GoP) settings, allowable resolutions and bitrates, frames
per second (fps), among other relevant settings.

 Bento42: it is responsible of creating segments of a specific

duration, also according to the GoP and fps settings

specified in the previous process.

 MPD-Creator: it is a Python script developed from scratch,

by using the xml.etree.ElementTree library3, to create the

1 https://ffmpeg.org/
2 https://www.bento4.com/
3 https://docs.python.org/2/library/xml.etree.elementtree.html

MPD, based on the DASH specification and on the settings

of the previous two processes.

The DASH-Creator script performs a complete iteration for each

of the first two processes for each one of the targeted

representations and, once all the representations have been

segmented, creates the MPD using MPD-Creator.

In order to assist non-expert users in these processes, a GUI for

DASH-Creator has been designed. A demo video showing its

performance can be watched at: https://goo.gl/IxMxWL

The fourth process consists of storing the DASH content and
MPD file on an HTTP server (e.g., Apache).

2.2 Client Side
An overview of the GStreamer pipeline (i.e., chain of elements)

required to create the DASH client can be seen in Figure 3, while

a brief summary of each element’s purpose is provided in Table 1.

The DASH client has been implemented using a combination of

different programming languages. First, C, complemented with

GObject and Glib libraries, which are the core languages in which

the GStreamer backend is implemented, have been used to modify
the source code of specific GStreamer elements (explained later).

Second, the GStreamer pipeline and the adaptive quality

switching module have been implemented by using the Gtreamer

Python bindings (Gst-Python). Third, the different modules of the
provided GUI have been implemented by using PyGtk.

Figure 1. Overview of the End-to-End DASH Platform.

Figure 2. DASH Content Preparation and Storage.

https://ffmpeg.org/
https://www.bento4.com/
https://docs.python.org/2/library/xml.etree.elementtree.html
https://goo.gl/IxMxWL

Figure 3. GStreamer pipeline for the DASH CLIENT.

Table 1. GStreamer elements used to create the DASH Client

Element Description

SoupHttpSrc Data Reception over the network via HTTP

Buffer /

Queue

Queue element that acts as a reception buffer for a

specific (configurable) number of (DASH) segments

DashDemux

It does not act as a traditional de-multiplexer

(demuxer), instead it analyzes the MPD and requests

the most proper representation, based on the available

BW. Then, it exposes the incoming segments to the

actual demuxers.

Audio /

Video

Queues

Queues are commonly used as buffers, but can also

be used after demux elements to force independent

execution threads for each branch, allowing for a

better sync between the data in each branch.

QtDemux
Demux to extract (QuickTime) H264 and AAC

components from an incoming MP4 stream

H264_Parser H264 video stream parser

Avdec_h264 H264 video decoder

Xvimagesink Rendering of raw video frames to an output window

Aac Parse AAC audio stream parser

Faad (Free) Audio AAC decoder

Alsasink Output raw audio to a sound card

A reception buffer has been added to the DASH client. Its

capacity can be set in bytes, seconds or in number of segments.

The latter option has been chosen. The buffer plays a key a role at
the beginning of the media session, as it is used to perform a pre-

buffering process, which means that media playout will not start

until a target (configurable) buffer fullness level is reached. This

contributes to a smoother playout during the media session’s

lifetime. During the pre-buffering process, the lowest quality will

be requested in order to minimize the start-up delay.

In addition, the client includes a module integrating an adaptive

algorithm for switching between the available representations of
the media content at the server side. For that purpose, the source

code of the Dashdemux element (Table 1) has been slightly

modified to allow for a more complete analysis and interpretation

of the MPD and to be able to take into account other parameters
than the available BW in the quality switching process.

Concretely, this algorithm takes into account the following key

network-based and client-based parameters:

 CPU Load. If the CPU load exceeds a specific threshold

(α), a lower quality will be requested.

 Battery Level and its Charging State. When the battery is

not being charged, if its level is below a specific threshold

(β), a lower quality will be requested, and if its level is even

lower than a more restrictive threshold (ε), the lowest

quality will be requested.

 Buffer Occupancy. If the buffer occupancy is lower than a

specific threshold (δ), a lower quality will be requested to

prevent from buffer underflow situations. Buffer overflow

situations cannot occur in the developed platform, because

the DashDemux element only requests for a new segment

when an outgoing segment is sent to the decoders. That is
the reason why an upper threshold has not been considered.

 Available BW or effective throughput. Rather than the

available BW, as in other works, the adaptive quality

switching module measures the effective throughput by

calculating the time interval needed to download a segment
of a specific size. Besides, a (configurable) sliding window

of S segments can be used to average this calculation, thus

somehow overcoming short term BW fluctuations. The

bitrate of the selected quality will be always equal or lower
than the measured effective throughput.

The algorithm is computed for each segment request. Its flow

chart can be seen in Figure 4. On the one hand, it adopts a slow

decrease adaptation strategy to prevent from abrupt adjustments
(except when the battery level is below ε), which may lead to QoE

degradation. In case that bad conditions persist, a lower quality

will be requested in the next iteration. On the other hand, if all the

conditions are good, the algorithm requests the best quality

possible according to the available BW.

The client side also includes a GUI with: 1) a DASH player; 2) a

configuration module to set the thresholds for each of the

considered parameters; 3) a simulation module that allows
dynamically forcing specific values for each of these parameters;

and 4) a representation module that allows a real-time

visualization of the evolution of these values and of the selected

representation via text labels, screen overlays and graphs. A
screen capture of the DASH client can be seen in Figure 5, while a

demo video showing its performance can be watched at:

https://goo.gl/oEig1v

Figure 4. Flow chart of the Quality Adaptation Algorithm.

https://goo.gl/oEig1v

Figure 5. Screen Capture of the DASH Client.

3. EVALUATION
This section presents the results of a preliminary evaluation to
show the satisfactory behavior and performance of the developed

platform. For the evaluation, the Teers of Steel open movie4 has

been used as the input media file, and it was encoded into five

video representations (H.264 codec, 24 fps, and resolutions of
240p, 360p, 480p, 720p and 1080p) and one audio representation

(AAC codec with a sampling rate of 44100 Hz). The segments’

length was set to 3s. The values for the different thresholds were

set to: α=85%, β=15%, ε=5%, δ=50% and S=2. In order to check
how the platform performs in the presence of critical situations,

the evolution of the values of the considered parameters was

simulated, forcing extreme values (exceeding the allowable

thresholds) at some instants. The simulation can be done either by
manually and dynamically setting these values through the

controls provided in the DASH client (see Figure 5) during the

session evolution or by preparing and loading text-based traces

with the targeted values at the beginning of the session.

Figure 6 shows the evolution of the selected quality, represented

by the associated bitrates, according to the BW availability. It can

be seen that the algorithm adaptively selects the best quality

(bitrate) possible without exceeding the available BW. In addition,
by setting S>1 (in this case S=2), the algorithm can perform better

when short term BW fluctuations occur (see the interval between

seconds 90-th and 100-th in Figure 6), but at the cost of a slower

reaction if these BW variations persist. Figure 7 shows the
evolution of the selected quality (bitrate) according to the

evolution of the considered parameters, assuming an unlimited

BW availability (the evaluation was performed in a LAN

scenario). It can be seen that the algorithm performs as expected
when their values exceed the allowable (configured) thresholds.

4. CONCLUSION & FUTURE WORK
We believe that our platform is an outstanding contribution and

that it will be relevant for interested researchers, practitioners and

trainees, thus having potential for academic purposes. Several
objectives are planned for future work. First, we want to

determine the dependences between the considered parameters

and the impact that the selected representation has on each of

them. Second, we plan to explore the suitability of considering
additional features and conditions as input parameters to the

adaptive algorithm (e.g., device stability, screen resolution,

ambient noise, aspects that somehow reflect the users’

4 https://mango.blender.org/

attention…). Moreover, we also plan to refine the quality

adaptation algorithm, based on the previous tasks and on the
insights from objective (QoS) and subjective (QoE) evaluations

we will conduct. Finally, we plan to include network-aware

strategies to take into account situations in which multiple clients

are requesting the same content and/or competing for BW.

5. ACKNOWLEDGMENTS
This work has been funded, partially, by the “Fondo Europeo de

Desarrollo Regional (FEDER)” and the Spanish Ministry of

Economy and Competitiveness, under its R&D&I Support

Program, in project with reference TEC2013-45492-R.

Figure 6. Selected Quality according to the BW availability.

Figure 7. Selected Quality according to the Input Parameters.

6. REFERENCES
[1] Stockhammer, T. Dynamic Adaptive Streaming over HTTP:

Standards and Design Principles. ACM MMSYS 2011, San

Jose, California (USA), February 2011.

[2] ISO/IEC 23009-1: 2012. Information Technology. Dynamic

Adaptive Streaming over HTTP (DASH). Part 1: Media
Presentation Description and Segment Formats. April 2012.

[3] ETSI TS 102 796 V1.3.1, Hybrid Broadcast Broadband TV,

www.hbbtv.org, November 2015.

[4] Lecompte, D., Gabin, F. Evolved multimedia
broadcast/multicast service (eMBMS) in LTE-advanced:

overview and Rel-11 enhancements. IEEE Communications

Magazine, 50(11), pp.68-74, November 2012.

[5] Wang, X., et al. 2013. AMES-Cloud: A Framework of
Adaptive Mobile Video Streaming and Efficient Social

Video Sharing in the Clouds. IEEE Transactions on

Multimedia, 15(4), 811–820, 2013.

[6] Han, D., et al. 2013. MASERATI: Mobile Adaptive
Streaming Based on Environmental and Contextual

Information. ACM WiNTECH, Miami(USA), October 2013.

[7] Hao, J., Zimmermann, R., and Ma, H. 2014. GTube: Geo-

predictive Video Streaming over HTTP in Mobile
Environments. ACM MMSYS 2014, Singapore, March 2014.

[8] Wilk, S., et al. 2015. EnvDASH: An Environment-Aware

Dynamic Adaptive Streaming over HTTP System. ACM

TVX '15. Brussels (Belgium), June 2015.

[9] Gstreamer Framework, http://gstreamer.freedesktop.org/

https://mango.blender.org/
http://gstreamer.freedesktop.org/

