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ABSTRACT 

This paper presents an end-to-end Dynamic Adaptive Streaming 

over HTTP (DASH) platform, developed by using open-source 

components. It includes and allows the configuration of all the 

required steps along the end-to-end media delivery chain, from the 
encoding, segmentation and storage of the media content at the 

server side, to the delivery and adaptive consumption of the media 

content at the client side. A key component of this platform is the 

DASH client, developed using the GStreamer framework. It 
includes a module with a novel adaptive algorithm for switching 

between the available representations (i.e., qualities) of the media 

content at the server side, based on the available bandwidth and 

on internal conditions and features of the client (such as the buffer 
occupancy level, the battery level, its charging state and the CPU 

load). It also includes different modules to simulate specific 

values for these parameters, and to visualize their values and the 

value of the selected quality in real-time. A preliminary evaluation 
has proved the satisfactory performance of the overall platform. 

Finally, links to demo videos are provided to demonstrate the 

satisfactory performance and capabilities of this platform.   
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Multimedia information systems →  Multimedia streaming 
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1. INTRODUCTION 
Broadband media delivery is exponentially gaining momentum. 
Consumers, wherever they are and whichever the device or access 

technology they are using, demand high-quality media 

experiences (e.g., in terms of high resolution, low start-up delays, 

continuous playout, interaction features, trick mode support…). 
To ensure these demands, the whole media delivery ecosystem 

needs to be optimized.  

Recently, a new wave of client-driven HTTP-based Adaptive 

Streaming (HAS) solutions have been specified with the goal of 
improving the adaptability and continuity of media playout, based 

on the changing network conditions and on the capabilities, 

resources and state of the consumption devices. Their main 

advantages are adaptability, scalability, reliability, reachability 

and cost efficiency. The basic concept of HAS solutions is to 

provide multiple versions (aka representations) of the media 
content (e.g., in different resolutions or bitrates) and chop each of 

these versions into a sequence of (small) segments (e.g., with a 

duration of 2s). These different segments can be decoded and 

consumed independently of the other segments. In addition, an 
index or manifest file is created, which contains the required 

metadata information to describe the relationships between the 

segments and the available representations.  

Based on these resources, the client, by means of HTTP requests, 
will firstly download the manifest file and, after that, will 

dynamically decide which segment (of which representation) to 

download in each moment, based on the information contained in 

the manifest file and on its current specific context (e.g., available 
bandwidth or BW). Typically, the client will select, for each 

segment request, the highest quality possible to ensure the 

continuity of the playout, according to the (changing) available 

resources. A key aspect of HAS clients is the design of the 
algorithm to adaptively determine which segment to download in 

each iteration. It is commonly known as adaptation algorithm, 

and its behavior has a direct influence on the system performance 

and on the perceived Quality of Experience (QoE). 

From the available HAS solutions, Dynamic Adaptive Streaming 

over HTTP (DASH) [1] is highlighted, as it is a standard solution 

specified by ISO/IEC MPEG [2], which has been adopted by TV 

standards (e.g., in HbbTV [3]), by mobile broadcasting standards 
(e.g., eMBMS [4]), and by popular media services. In [2], the 

format of segments and the manifest file in DASH are specified. 

In this case, the manifest file is an XML-based file, called Media 

Presentation Description (MPD). 

The existing DASH clients mostly monitor the network conditions 

to adapt the quality switching process. Different works have 

proposed adaptation algorithms to optimize this process (e.g., [5]). 

Moreover, especially in mobile streaming scenarios, other 
(variable) environmental conditions can play a key role in this 

optimization process. For example, the works in [6] and in [7] 

have taken into account the location of the devices to plan future 

quality requests. Apart from the location of the device, the work 
in [6] takes into account its speed and surrounding humidity. 

Furthermore, the work in [8] proposes a system that leverages the 

availability of sensing capabilities of  mobile devices to reduce the 

network load in situations in which non-optimal watching 
conditions exist (by sensing the device shakiness and the ambient 

noise) or users are not paying attention to the video watching 

experience (by using the front-facing camera to integrate a face 
detection and tracking functionality). 
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Unlike the previous works which have extended existing DASH 

clients, this paper focuses on both the server and client sides, 
presenting an end-to-end DASH platform, developed by using 

open-source components. This platform includes and allows the 

configuration of all the steps along the end-to-end media delivery 

chain, from the generation, encoding, segmentation and storage of 
the media content, as well as the creation of the MPD, at the 

server side, to the delivery and adaptive consumption of the media 

content at the client side. A key component of this platform is the 

DASH client, developed using the GStreamer framework [9], 

which includes a module with an adaptive quality switching 

algorithm. This algorithm takes into account key network-based 

and client-based parameters (some of them not considered in other 

works), such as the available BW and various internal parameters 
of the client (e.g., buffer occupancy level, battery level, its 

charging state and CPU load). Apart from the DASH player, the 

client also includes a Graphical User Interface (GUI) with a 

configuration module to set the allowable thresholds for these 
parameters, a simulation module to dynamically force specific 

values to these parameters, and a representation module that 

allows a real-time visualization of these values and the selected 

quality in text labels, overlays and graphs. 

A preliminary evaluation proves the satisfactory performance of 

the overall platform, when forcing specific values to the involved 

parameters. Links to demo videos are also provided to show the 

satisfactory performance and capabilities of this platform. 

During the demo session, the attendees will be able to interact 

with our platform, will be guided in its use, and will be able to 

check how it performs in different situations. We also expect to 

get valuable feedback about its applicability, usability, design 
aspects and future functionalities. 

2. END-TO-END DASH PLATFORM 
This section describes the two main parts of the presented DASH 

platform: the server side and the client side. An overview of the 

platform and the HTTP-based communication process between 
the two parts is shown in Figure 1. 

2.1 Server Side 
The server side comprises four main processes (summarized in 

Figure 2). First, an input media file (whatever its format) is 

encoded into the supported codecs (e.g., H.264 or H.265 for video 
and AAC for audio) in DASH, in different representations, which 

are then encapsulated in MP4 format. Second, the representations 

are segmented. Third, the MPD is created. 

The first three processes are automatically executed by running a 
developed Python script, called DASH-Creator, which internally 

makes use of: 

 FFmpeg1: it is responsible of the encoding process. It 

allows configuring the codec settings, Group of Picture 

(GoP) settings, allowable resolutions and bitrates, frames 
per second (fps), among other relevant settings. 

 Bento42: it is responsible of creating segments of a specific 

duration, also according to the GoP and fps settings 

specified in the previous process. 

 MPD-Creator: it is a Python script developed from scratch, 

by using the xml.etree.ElementTree library3, to create the 

                                                                   

1 https://ffmpeg.org/  
2 https://www.bento4.com/  
3 https://docs.python.org/2/library/xml.etree.elementtree.html  

MPD, based on the DASH specification and on the settings 

of the previous two processes. 

The DASH-Creator script performs a complete iteration for each 

of the first two processes for each one of the targeted 

representations and, once all the representations have been 

segmented, creates the MPD using MPD-Creator. 

In order to assist non-expert users in these processes, a GUI for 

DASH-Creator has been designed. A demo video showing its 

performance can be watched at: https://goo.gl/IxMxWL 

The fourth process consists of storing the DASH content and 
MPD file on an HTTP server (e.g., Apache). 

2.2 Client Side 
An overview of the GStreamer pipeline (i.e., chain of elements) 

required to create the DASH client can be seen in Figure 3, while 

a brief summary of each element’s purpose is provided in Table 1. 

The DASH client has been implemented using a combination of 

different programming languages. First, C, complemented with 

GObject and Glib libraries, which are the core languages in which 

the GStreamer backend is implemented, have been used to modify 
the source code of specific GStreamer elements (explained later). 

Second, the GStreamer pipeline and the adaptive quality 

switching module have been implemented by using the Gtreamer 

Python bindings (Gst-Python). Third, the different modules of the 
provided GUI have been implemented by using PyGtk. 

 

Figure 1. Overview of the End-to-End DASH Platform.  

 

Figure 2. DASH Content Preparation and Storage.  
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Figure 3. GStreamer pipeline for the DASH CLIENT. 

Table 1. GStreamer elements used to create the DASH Client 

Element Description 

SoupHttpSrc Data Reception over the network via HTTP 

Buffer / 

Queue 

Queue element that acts as a reception buffer for a 

specific (configurable) number of (DASH) segments 

DashDemux 

It does not act as a traditional de-multiplexer 

(demuxer), instead it analyzes the MPD and requests 

the most proper representation, based on the available 

BW. Then, it exposes the incoming segments to the 

actual demuxers.  

Audio / 

Video 

Queues 

Queues are commonly used as buffers, but can also 

be used after demux elements to force independent 

execution threads for each branch, allowing for a 

better sync between the data in each branch. 

QtDemux 
Demux to extract (QuickTime) H264 and AAC 

components from an incoming MP4 stream  

H264_Parser H264 video stream parser 

Avdec_h264 H264 video decoder 

Xvimagesink Rendering of raw video frames to an output window  

Aac Parse AAC audio stream parser 

Faad (Free) Audio AAC decoder 

Alsasink Output raw audio to a sound card 
 

A reception buffer has been added to the DASH client. Its 

capacity can be set in bytes, seconds or in number of segments. 

The latter option has been chosen. The buffer plays a key a role at 
the beginning of the media session, as it is used to perform a pre-

buffering process, which means that media playout will not start 

until a target (configurable) buffer fullness level is reached. This 

contributes to a smoother playout during the media session’s 

lifetime. During the pre-buffering process, the lowest quality will 

be requested in order to minimize the start-up delay. 

In addition, the client includes a module integrating an adaptive 

algorithm for switching between the available representations of 
the media content at the server side. For that purpose, the source 

code of the Dashdemux element (Table 1) has been slightly 

modified to allow for a more complete analysis and interpretation 

of the MPD and to be able to take into account other parameters 
than the available BW in the quality switching process.  

Concretely, this algorithm takes into account the following key 

network-based and client-based parameters:  

 CPU Load. If the CPU load exceeds a specific threshold 

(α), a lower quality will be requested. 

 Battery Level and its Charging State. When the battery is 

not being charged, if its level is below a specific threshold 

(β), a lower quality will be requested, and if its level is even 

lower than a more restrictive threshold (ε), the lowest 

quality will be requested. 

 Buffer Occupancy. If the buffer occupancy is lower than a 

specific threshold (δ), a lower quality will be requested to 

prevent from buffer underflow situations. Buffer overflow 

situations cannot occur in the developed platform, because 

the DashDemux element only requests for a new segment 

when an outgoing segment is sent to the decoders. That is 
the reason why an upper threshold has not been considered. 

 Available BW or effective throughput. Rather than the 

available BW, as in other works, the adaptive quality 

switching module measures the effective throughput by 

calculating the time interval needed to download a segment 
of a specific size. Besides, a (configurable) sliding window 

of S segments can be used to average this calculation, thus 

somehow overcoming short term BW fluctuations. The 

bitrate of the selected quality will be always equal or lower 
than the measured effective throughput. 

The algorithm is computed for each segment request. Its flow 

chart can be seen in Figure 4. On the one hand, it adopts a slow 

decrease adaptation strategy to prevent from abrupt adjustments 
(except when the battery level is below ε), which may lead to QoE 

degradation. In case that bad conditions persist, a lower quality 

will be requested in the next iteration. On the other hand, if all the 

conditions are good, the algorithm requests the best quality 

possible according to the available BW. 

The client side also includes a GUI with: 1) a DASH player; 2) a 

configuration module to set the thresholds for each of the 

considered parameters; 3) a simulation module that allows 
dynamically forcing specific values for each of these parameters; 

and 4) a representation module that allows a real-time 

visualization of the evolution of these values and of the selected 

representation via text labels, screen overlays and graphs. A 
screen capture of the DASH client can be seen in Figure 5, while a 

demo video showing its performance can be watched at: 

https://goo.gl/oEig1v  

 

Figure 4. Flow chart of the Quality Adaptation Algorithm. 

https://goo.gl/oEig1v


 

Figure 5. Screen Capture of the DASH Client. 

3. EVALUATION 
This section presents the results of a preliminary evaluation to 
show the satisfactory behavior and performance of the developed 

platform. For the evaluation, the Teers of Steel open movie4 has 

been used as the input media file, and it was encoded into five 

video representations (H.264 codec, 24 fps, and resolutions of 
240p, 360p, 480p, 720p and 1080p) and one audio representation 

(AAC codec with a sampling rate of 44100 Hz). The segments’ 

length was set to 3s. The values for the different thresholds were 

set to: α=85%, β=15%, ε=5%, δ=50% and S=2. In order to check 
how the platform performs in the presence of critical situations, 

the evolution of the values of the considered parameters was 

simulated, forcing extreme values (exceeding the allowable 

thresholds) at some instants. The simulation can be done either by 
manually and dynamically setting these values through the 

controls provided in the DASH client (see Figure 5) during the 

session evolution or by preparing and loading text-based traces 

with the targeted values at the beginning of the session.  

Figure 6 shows the evolution of the selected quality, represented 

by the associated bitrates, according to the BW availability. It can 

be seen that the algorithm adaptively selects the best quality 

(bitrate) possible without exceeding the available BW. In addition, 
by setting S>1 (in this case S=2), the algorithm can perform better 

when short term BW fluctuations occur (see the interval between 

seconds 90-th and 100-th in Figure 6), but at the cost of a slower 

reaction if these BW variations persist. Figure 7 shows the 
evolution of the selected quality (bitrate) according to the 

evolution of the considered parameters, assuming an unlimited 

BW availability (the evaluation was performed in a LAN 

scenario). It can be seen that the algorithm performs as expected 
when their values exceed the allowable (configured) thresholds. 

4. CONCLUSION & FUTURE WORK 
We believe that our platform is an outstanding contribution and 

that it will be relevant for interested researchers, practitioners and 

trainees, thus having potential for academic purposes. Several 
objectives are planned for future work. First, we want to 

determine the dependences between the considered parameters 

and the impact that the selected representation has on each of 

them. Second, we plan to explore the suitability of considering 
additional features and conditions as input parameters to the 

adaptive algorithm (e.g., device stability, screen resolution, 

ambient noise, aspects that somehow reflect the users’ 

                                                                   

4 https://mango.blender.org/  

attention…). Moreover, we also plan to refine the quality 

adaptation algorithm, based on the previous tasks and on the 
insights from objective (QoS) and subjective (QoE) evaluations 

we will conduct. Finally, we plan to include network-aware 

strategies to take into account situations in which multiple clients 

are requesting the same content and/or competing for BW. 
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Figure 6. Selected Quality according to the BW availability. 

 

Figure 7. Selected Quality according to the Input Parameters. 
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