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ABSTRACT
Dynamic adaptive streaming over HTTP (DASH) is a simple, but
effective, technology for video streaming over the Internet. It
provides adaptive streaming while being highly scalable at the
side of the content providers. However, the mismatch between
TCP and the adaptive bursty nature of DASH traffic results in
underperformance of DASH streams in busy networks. This paper
describes a networking architecture based on the Software Defined
Networking (SDN) paradigm. Controllers in the network with a
broad overview on the network activity provide two mechanisms for
adaptation assistance: explicitly signaling target bitrates to DASH
players and dynamic traffic control in the network. We evaluate
how each of these mechanisms can contribute to the delivery of
a stable and high quality stream. It shows that our architecture
improves the quality of experience by doubling the video bitrate
and reducing disturbing quality switches. As such, this paper
contributes insights on how to implement DASH-aware networking
that also enables internet service providers, network administrators,
and end-users to configure their networks to their requirements.
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1. INTRODUCTION
Dynamic adaptive streaming over HTTP (DASH)1 has become

the most popular technology for streaming video over the Internet.
The advantage of DASH is that it allows video players to adapt
the video quality to the current network conditions, while the
usage of HTTP enables content providers scalable distribution
using content delivery networks (CDNs). However, several studies
showed that DASH performs poorly in the presence of background
traffic [14], and that DASH players suffer unfair sharing of the
available bandwidth and instability when a bottleneck link is used
by multiple DASH players [3, 2]. Besides a lower bitrate or
resolution, changing the video quality too often negatively impacts
the quality of experience [6, 11, 22].

Given the popularity of online streaming services, such as
YouTube or Netflix, it is no longer an exception that multiple users
stream videos in the same network at the same time. Although
the capacity of computer networks keeps increasing, they might
not be able to keep up with the growing demand for bandwidth
that is caused by video streaming [5]. Bottleneck links are likely
to be encountered, and can be found in different locations such as
household-, campus- and corporate networks, or in Wi-Fi hotspots.

In such networks, DASH players have to compete for bandwidth
with both each other, and with other traffic on the network
link. Current networks offer little to no support for improving
the streaming performance of DASH players. Moreover, the
usage of TCP, in combination with the bursty traffic that DASH
creates, makes that DASH players stream at suboptimal rates and
suffer from unfairness and instability. State-of-the-art adaptation
algorithms in DASH players improve the streaming performance.
However, selecting a bitrate remains a difficult task for a player,
because players have a limited view on other network activity and
cannot make assumptions on the underlying network infrastructure.

This paper describes a DASH-aware networking architecture
based on the novel software defined networking (SDN) paradigm.
In SDN the data plane is separated from the control plane. A
network controller, with a broad overview of the network activity
and the active DASH players, assists DASH players in selecting
optimal bitrates. Furthermore, it ensures that the players can
reach sufficient download speeds via Quality of Service (QoS)
mechanisms.

Our architecture keeps the DASH protocol stack simple and
scalable, while it improves the quality of experience for the
viewers. In a thorough evaluation of this architecture in a
Wi-Fi hotspot, we show that the video bitrate can be doubled

1In general we are referring to the technique, but we are using the
DASH standard [1] in our implementation and evaluations.



and the number of quality switches can be greatly reduced.
Furthermore, given our architecture, internet service providers
(ISPs), network administrators and potentially end-users can
configure their network better. They can define how bandwidth
should be shared between video- and other traffic, and how
bandwidth should be shared among video players. This allows
for network management with DASH-aware policies where the
SDN-based network ensures successful execution of those policies.
The dynamic architecture presented in this paper, in combination
with the insights that we obtained in the evaluations, contribute to
the understanding on how to realize DASH-aware networking and
enables further research and development of service policies.

The remaining of this paper is as follows. Section 2 provides the
related work. Section 3 outlines the architecture design. Section
4 describes the experimental setup. Section 5 provides a thorough
evaluation of our architecture and shows the effectiveness of our
solution in a Wi-Fi deployment. Section 6 concludes this paper.

2. RELATED WORK
When using DASH, a player is offered a list of different

representations of the same video. The representations differ
in bitrate and resolution, and a DASH player can select a
representation that is optimal for the device and the current network
conditions. In most DASH architectures, the mechanism for
selecting the bitrate and resolution is built into the player. However,
it has been shown that existing DASH-capable applications have
difficulties selecting a bitrate and that they suffer instability and
unfair network resource sharing when multiple DASH players share
a bottleneck link [3, 2, 14]. Instability and unfairness are a result
from the mismatch between the bursty ON/OFF client side behavior
and the usage of the TCP transport protocol [8]. The double
feedback loop, both the DASH player and TCP respond to changes
in bandwidth, makes it difficult to get an accurate estimation of the
available bandwidth.

As a consequence, the instability in video bitrate lowers the
overall quality of experience and diminishes user engagement [6,
7, 22]. To optimize the viewers’ quality of experience the video
bitrate must be maximized, while keeping the number of switches
in bitrate to a minimum [12]. Several solutions for improving the
adaptation mechanisms in the players are proposed in the literature
[16, 18, 20, 24, 15]. The downside of only improving the client-side
is that it remains specific to the player, and that they cannot easily
be configured by the user or a network administrator to achieve
specific requirements.

As an alternative to changing the adaptation logic inside the
player, network devices can be used to assist players in selecting
a representation. Network devices have a broader view on the
network and its capabilities. DASH players can obtain a better
estimation of the available bandwidth when the network devices
share their knowledge with the players. In [13] it is shown how
this can be done implicitly by shaping the flows of the DASH
streams. Others have routed DASH traffic through DASH-aware
proxy servers that they have deployed in the network [4, 17].
In [21] a chain of proxy servers is used to address networking
infrastructures with multiple bottlenecks. Georgopoulos et al.
presented an OpenFlow-enabled system where an orchestrating
module explicitly informs the DASH players which representation
they should select [10]. In [9] SDN is leveraged to optimize
DASH video streams by using in-network caches. The Server and
Network Assisted DASH (SAND) proposal specifies the control
messages between DANE and players, and between DANEs [23].
The architecture that we present in this paper fits that proposal as
it implements a DANE, and could be extended to comply with the

SAND message format once standardized.
The drawback of DANE implementations that we mentioned is

that they use intrusive means to detect DASH traffic and require the
manifests to be inspected by the DASH Assisting Network Element
(DANE). When encryption (i.e. HTTPS) is used for the manifest,
it cannot be obtained by monitoring the network, or the chain of
trust between the client and server must be broken. If the manifest
can be obtained, the users’ privacy is potentially invaded because
the DANE knows what each user is watching. Our architecture is
privacy aware, in the sense that the contents of the manifest and
the stream does not have to be disclosed to the DANE, because it
only needs the format (e.g. encoding scheme) to function properly.
Our DASH player will communicate this information directly to the
DANE.

Furthermore, the implementations mentioned above are
evaluated in networks with only DASH traffic, and thus without
background traffic. Therefore, they cannot guarantee that the
adaptation assistance mechanisms are effective in network
deployments with other traffic. Our architecture does take
background traffic into account, and provides assistance to the
DASH players at both the application level, as well as through
traffic control in the network. Moreover, our evaluations are
performed both with and without background traffic.

3. ARCHITECTURE DESIGN
In this section we propose a networking architecture with specific

support for DASH streaming. The architecture employs the SDN
paradigm: the network data plane is separated from the network
control plane. Our solution uses programmable network hardware,
i.e. configurable by OpenFlow, and a network controller. On top
of it, we add the Service Manager, a component that is DASH
aware and implements adaptation logic. It is our goal to keep the
simplicity and the robustness of DASH technology, but to defeat
the negative influence of TCP and bursty traffic on the streaming
performance in busy networks. For that reason, we propose an
hybrid adaptation technique, in which the DASH video players are
assisted by the Service Manager. The architecture is illustrated in
Figure 1.

Figure 1: DASH aware SDN architecture that separates data
plane (network infrastructure) from control plane (network
management and application controllers). The mixed-dashed
line indicates a communication channel between DASH player
and Service Manager.



3.1 Programmable network hardware and
Network Controller

Programable network hardware is at the basis of the architecture.
In the SDN paradigm, network elements collect device status and
statistics, and can execute packet forwarding following a set of rules
more sophisticated than in traditional networks. A central entity, the
Network Controller, is in charge of monitoring and configuring all
network elements. Hence, the controller has a global view of the
network and is capable to dynamically add and destroy forwarding
rules in devices. The standard protocol that acts as interface
between the Network Controller and the network hardware is
OpenFlow [19]. This protocol can be used to assign traffic to
specific QoS queues via the enqueue action in combination with
a possibly detailed flow match. However, OpenFlow does not
support quality of service configuration. For that reason, our
network elements implement an additional QoS interface. This
extra interface allows, for each queue, the specification of a
minimum throughput guarantee, a maximum throughput cap, or a
combination of the two. With the combination of both interfaces,
the Network Controller has the ability to create queues specifying
these QoS parameters.

In a future scenario, network controllers will manage the network
of an organization, e.g. an Internet Service Provider, or part of it.
DASH services can run over several of these networks. For that
reason, we add a component, the Service Manager, that can interact
with several network controllers and apply a specific service logic
into different network domains.

3.2 Service Manager
The Service Manager oversees DASH traffic over different

networks. By interacting with a Network Controller and the DASH
players, it is aware of active DASH players in a network and of its
available resources. Therefore, it is capable of allocating network
resources and assisting players in the adaptation. For this paper,
we have implemented network resource allocation and adaptation
policies in the Service Manager. These policies are useful to
illustrate its advantages, but they are not specific to the architecture.
Instead, the Service Manager can be configured to implement the
policies that better fit the specific DASH service, the device, or the
networks where it is deployed.

Explicit adaptation assitance in the Service Manager follows
the fairness criteria of equal bandwidth for every active DASH
player and other flows in the network (i.e. background traffic).
For simplicity, we specified a policy that treats each device equal,
disregarding the type of device. However, it allows players
to communicate a maximum bitrate that they are capable of
displaying. Future policies should include device specific factors.

As a first approximation, the total bandwidth in each link is
divided by the number of flows, including video streams and
background traffic. If the bitrate required by a video stream
is smaller than its fair share, the excess bandwidth is equally
distributed among the remaining flows. We call the bandwidth
assigned to each DASH player its target bitrate. The Service
Manager uses the target bitrate to allocate network resources
through the Network Controller. Then, the players are notified of
this target bitrate, so they can use it as a reference of the maximum
quality level they should request.

Dynamic quality of service is done by means of instantiating
queues in network elements. We consider two queuing alternatives.
The first is similar to the traditional differentiated services
(DiffServ) approach. This technique creates one queue for DASH
traffic and one queue for the rest, i.e. background traffic. Thus, all
video streams traversing a network device share the same queue.

The maximum throughput for traffic in the DASH queue is limited
to the sum of the target bitrates. Similarly, the throughput of
the background queue is capped to the remaining capacity of the
network link. The second queuing technique goes one step further
by creating a queue for each DASH player. Each queue provides
a minimum rate guarantee that matches the target bitrate of the
stream. We do not want to cap the throughput of each individual
queue because it jeopardizes the continuity of the stream. Instead,
the throughput of all DASH queues combined is limited to the sum
of the target bitrates. This way, bandwidth that is not used by a
DASH player, e.g. because some segments are smaller than the
target bitrate as a result of VBR encoding, can be used by other
players, and let them increase their buffers.

Adaptation and network resource allocation are executed every
time a DASH player starts, stops or changes its status, or when there
are changes in background traffic that would require the DASH
players to change their bitrates. The network will be dynamically
reconfigured to adapt to current conditions and, as a consequence,
maximize the experience of the users by aiming for the maximum
possible quality and avoiding interruptions.

3.3 DASH player
DASH players need to be extended to benefit from the hybrid

adaptation mechanism proposed in our architecture. The players
share the bitrates available in the requested media and receive
the recommendation of a target bitrate. When a DASH client
downloads the manifest file, it extracts the bitrates for audio and
video from it. From those bitrates, it makes a selection of possible
bitrates and those are sent to the Service Manager. Note that during
this process the privacy of the user, i.e. the media requested, can be
preserved: only the list of bitrates is shared. At this point, the player
may have excluded some bitrates, for example because they are too
high and exceed the capabilities of the device. If the conditions
of the player change, a new set of bitrates can be sent to the
Service Manager. Then, the old set is overwritten and the Service
Manager executes again the adaptation and the network resource
allocation processes. This is a useful feature if the capabilities of
the device change over time. For instance, higher bitrates can be
included when switching to fullscreen mode, while they can be
discarded to reduce energy consumption in a mobile device. The
end or pause of a stream is indicated to the Service Manager by
either signaling from the player, or by closing the connection to the
Service Manager.

Explicit adaptation assistance is performed by pushing a target
bitrate to the client, where the target bitrate is one of the bitrates
that the client has reported to the manager. It is up to the client how
to handle this information. In our implementation, we provide two
different modes. In automatic mode, the player shares information
about the stream with the Service Manager, but ignores the target
bitrate and relies on the built-in adaptation algorithm. In hybrid
mode, the DASH player requests the target bitrate suggested by
the Service Manager, but only when it is confident that it does
not compromise the continuity of the stream. During the initial
buffering, the player relies on its built-in adaptation algorithm,
with the restriction that it does not select bitrates higher than the
target bitrate. This allows the player to fill the buffer more quickly
and thus start streaming sooner. Once the buffer reaches a certain
threshold (10 seconds in our implementation), the player requests
the target bitrate. This mechanism prevents the DASH clients from
overtaking each other by selecting too high bitrates that would have
caused congestion. Furthermore, it allows the players to stabilize
the streams and rely on the Service Manager to inform them about
necessary adaptation actions (i.e. adapt the bitrate when a player



enters or leaves the network). In the case where the download
speeds are not sufficient to keep up with the playback, and the buffer
level is critically low (we set the lower threshold to 5 seconds),
the player switches back to the built-in algorithm until the buffer
contains at least 10 seconds of video. This fallback mechanism
is useful when the player is under worse network conditions than
those foreseen by the Network Controller and the Service Manager.

4. EXPERIMENTAL EVALUATION
To show the effectiveness of our architecture we evaluate it in our

Wi-Fi based implementation. In this section we describe the testbed
that we use in the evaluations, followed by the evaluation design.

4.1 Wi-Fi testbed
We implemented our architecture using an OpenFlow-enabled

Raspberry Pi. The Raspberry Pi (model 2) is made into an
OpenFlow switch using Open vSwitch (version 2.3.0). Open
vSwitch is a kernel based switch implementation with high
performance compared to the reference switch implementation2.
Using Open vSwitch, the switching performance is not limited
by the CPU. The CPU load stays below 10% even when fully
loading the network interfaces. Quality of service is handled by
the built-in Linux traffic control. The QoS configuration is applied
by the QoS daemon that translates a queueing configuration into the
corresponding tc commands.

The Raspberry Pi will also act as Wi-Fi access point. Although
our architecture is generic and also applies to wired networks,
Wi-Fi networks make an interesting environment for study as
they are a commonly encountered bottleneck. Furthermore, the
throughput variations that result from using the Wi-Fi medium add
an extra level of difficulty for DASH players. The Wi-Fi network
is created using a USB Wi-Fi dongle (TP-Link TL-WDN4200) in
combination with a patched3 version of the hostapd (version 2.5.0)
software. The access point is configured to operate in the 5 GHz
band on channel 44 (20 MHz wide channel). The transmission
power of the Wi-Fi dongle is set to 20 dBm, in compliance with
Dutch regulations.

The Network Controller is implemented using POX (version
0.2.0), a Python-based SDN controller platform. On the
southbound it uses the OpenFlow 1.0 protocol to configure the
switch and obtain traffic statistics. Because QoS configuration
is separated from OpenFlow, the Network Controller configures
the QoS queues via a JSON-RPC based interface provided by the
QoS daemon. On the northbound, the Network Controller itself
also offers a JSON-RPC based interface. The Service Manager
uses this interface to dynamically apply the DASH specific policy.
In our testbed the Network Controller and Service Manager are
separate processes, but run on the same host that is connected to
the Raspberry Pi via the local area network.

It is required that the Service Manager can be reached from the
network created by the Raspberry Pi. To ease the implementation,
the Network Controller comes with an implementation of a
programmable DNS server. The DNS server provides on-the-fly
adding, modifying and removing of domain records that can be used
for our DASH management services. This gives the DASH players
an easy mechanisms for locating the in-network management
services. The DASH players will communicate with the Service
Manager to report their available bitrates and receive adaptation
instructions. This communication is done over a websocket that
2http://archive.openflow.org/wp/2008/05/
reference-implementation-v081/
3https://github.com/hschaa/hostapd/commit/
c89daaeca4ee90c8bc158e37acb1b679c823d7ab

is provided by the Service Manager. Websockets provide a
two-way communication channel that is also available to browser
based DASH implementations. We are using a browser based
player that is extended from the DASH.js (version 1.5.1) reference
implementation. The DASH players run on recent MacBook
Pro/Air machines in the Chrome browser.

The machines are connected to the Wi-Fi access point created by
the Raspberry Pi. Unless otherwise stated, the machines are spread
across a single office space, relatively close to the access point that
is located in the center of the room.

4.2 Experiment design
We evaluate the scenario where four nodes share a Wi-Fi network

for video streaming. The Wi-Fi network is the bottleneck link and
not sufficient for the four nodes to stream at the highest video
quality. This represents a scenario where four family members
share the household Wi-Fi and each member wants to view their
own content on their own device. A fifth node that does not engage
in video streaming is sometimes be added to the network. This
node generates TCP background traffic, and we will investigate how
background traffic affects DASH streams in our architecture.

The video nodes start streaming a ten-minute high quality clip
from the movie Sintel4, approximately at the same time. The
video is prepared in 14 representations with bitrates ranging from
300 Kbit/s to 18 Mbit/s, and resolutions ranging from 240p to
2160p (4K). The video is segmented with a segment size of two
seconds and described using the MPEG-DASH live profile that is
compatible with the guidelines from the DASH-IF industry forum.
The fifth node generates background traffic in the form of a TCP
download using iperf5.

The evaluation is split up into four experiments. In the first
experiment we evaluate the mechanism where the Service Manager
explicitly informs the DASH players which bitrate to select. DASH
players that are set to automatic mode will ignore the adaptation
assistance from the player. When put into assisted mode, the DASH
player will follow the Service Manager’s advice. Both modes
will be evaluated in an environment with and without background
traffic.

In the second experiment we inspect the impact of the quality of
service mechanisms. We implemented the two queueing strategies
that are mentioned in Section 3. The goal is not only to investigate if
DASH streaming improves when adding QoS, but also to identify if
a queueing configuration with separate queues for different players
has advantages over a single video queue. The DASH players are
set to automatic mode, where they do inform the Service Manager
about their streams, but rely on the built-in adaptation mechanism
for selecting the video representations.

The two mechanisms of explicit adaptation assistance and
dynamic quality of service are both enabled in the third experiment
in the evaluation. In this part we will investigate if combining the
two mechanisms outperforms a setup where only one of the two
mechanisms is enabled.

In the last experiment we focus on the Wi-Fi specific issue where
one node is further away from the access point than the other nodes.
This node will receive less throughput when the network becomes
loaded. We evaluate if our architecture reduces the inequality
between different nodes and how the streaming performance of the
node that is further away can be improved.

In the evaluations we focus on the bitrate of the stream and
the changes in bitrate that occur over time. These two factors
have been identified to play the biggest role in the quality of
4https://durian.blender.org
5https://iperf.fr



experience [12]. We look at the quality level instead of the
absolute bitrate of the segments. The quality levels of the segments
correspond to the 14 representations in which the video is prepared.
The video is prepared such that every next representation gives
a similar improvement in quality. However, the step in bitrate
between two different representations increases with the quality
level. Comparing absolute bitrates will lead to a bias towards the
higher bitrates. For the stability of the streams we will look at the
number of switches, the time between two switches, and the size of
the switches.

5. RESULTS
In this section we show how the adaptation assistance

mechanisms of our architecture add to the quality and stability of
DASH streams. We will first evaluate each of the two mechanisms
separately, and then combined. We end the evaluation with a
case specific to Wi-Fi networks, where one node has less network
performance than the other nodes because it is located further away
from the access point.

5.1 Only explicit adaptation assistance
For DASH players it is known that they have difficulties in

selecting a stable bitrate when multiple DASH players share a
bottleneck link. We demonstrate this effect in Figure 2, where
the DASH players select representations ranging from the lower
qualities up to the highest. Given the throughput of 42 Mbit/s
of the Wi-Fi network, the players could have stabilized at the
representation of 7.2 Mbit/s (level 10) and 10.6 Mbit/s (level 11).
However, the players adopted a selfish optimization strategy, trying
to increase the video quality to the highest quality level. This selfish
optimization came at the cost of having to switch to the lower
bitrates afterwards.

Figure 2: Video qualities for the scenarios without and with
assistance (left: without background traffic, right: with
background traffic)

Adding explicit adaptation assistance makes all players stream
stable at the target representation that they received from the
Service Manager. The total number of quality switches went down
from 291 to three switches while the mean quality level remained
the same (µ = 10.32, σ = 2.49 without assistance, versus
µ = 9.99, σ = 018 with assistance).

Figure 3: Buffer fill levels for the four DASH players in the
assisted scenario with background traffic

Although providing the DASH players assistance from the
Service Manager seems to improve the stability of DASH, there is
no guarantee for the players that they can actually reach the target
bitrate. Figure 2 on the right shows the impact of background traffic
in the network on DASH performance. In both cases, without and
with assistance, the video quality is significantly lower compared
to the experiments without background traffic. Adding adaptation
assistance increases the mean quality level by one (µ = 5.15,
σ = 3.58 with assistance, compared to µ = 4.30, σ = 2.87
without assistance), however it also shows a large variation in video
quality.

Even though DASH players are explicitly informed about the
fair quality level (quality level 10 at 7234 kbit/s), they were not
able to reach sufficient download speed to actually stream at this
rate. Figure 3 shows the buffer levels for each player in the assisted
scenario with background traffic. The buffer levels in the DASH
players regularly drop below the threshold of five seconds, for
which the players decide not to follow the assistance from the
manager and switch to the built-in adaptation mechanism. As a
result, result that also for the assisted scenario the video quality is
lower and more unstable. Rebuffering events were very unlikely
due to the fact that the DASH.js aggressively switched back to the
lowest available bitrate (300 Kbit/s), and was still able to continue
the stream without interruptions.

By looking at the download speeds of the background traffic
node in Figure 4, we can see that the throughput of the background
traffic is only marginally impacted by the active DASH players,
given that the background node reaches about 42 Mbit/s of effective
throughput when there are no DASH players active. Nevertheless,
considering that each player and the background node all use one
TCP connection (the DASH.js reference player uses HTTP/1.1 and
keeps the TCP connection to the server open), a fair allocation
of the available bandwidth would have been 9 Mbit/s per TCP
connection. The background node is using a manyfold of that,
while the DASH players stream at an average bitrate of 1871 kbit/s
(σ = 2703 kbit/s) without assistance from the Service Manager,
and at 2764 kbit/s (σ = 2812 kbit/s) with assistance.

From this we can conclude that the fair sharing mechanisms
in TCP are not adequate for DASH traffic. The bursty ON/OFF
download behavior of DASH players sets them back when they
have to compete with other continuous TCP flows. Explicitly
informing DASH players about optimal quality levels is thus only
effective when there is no background traffic. However, this is



Figure 4: Throughput of the background traffic. DASH
streaming starts at t = 0.

an unrealistic assumption. Thus, explicit adaptation assistance on
its own is not a sufficient mechanism for improving the quality of
DASH streams.

5.2 Only dynamic QoS support
The second mechanism that is offered by our architecture is

to provide dynamic quality of service support in the network.
The Network Controller can create, modify, and destroy queues
on the fly. In this evaluation we study two different queueing
implementations. The first implementation classifies traffic into
two groups: DASH traffic and non-DASH (background) traffic. For
each group it will create a separate queue, modifying the size the of
DASH queue to the current demand.

The second QoS implementation uses one queue per active
player. The throughput of individual queues is not capped. Instead,
the traffic control mechanism guarantees a minimum transmission
rate, if there is data to be transmitted. This means that the
minimum transmission rate only applies to the bottleneck link that
is controlled by the DANE. In case of other bottlenecks, The
combined throughput for the video queues is limited to the demand
of the DASH streams. We call this queueing implementation client
queues.

The problem with DASH streams in combination with
background traffic, is that the background traffic takes up a too
large portion of the available bandwidth. Limiting the throughput
for background traffic leaves the DASH players the room they need
to stream at the desired bitrate. The difference in throughput for
the background traffic is shown in Figure 5. In both queueing
configurations the throughput is brought back to 8.4 Mbit/s when
the players are started, and restored to 42 Mbit/s after the streams
are finished.

The difference in streaming bitrate for limiting, and not limiting
the background traffic, is shown in Figure 6 for the different
queueing implementations. Without QoS support and in the
presence of background traffic, the DASH players perform poorly.
Adding QoS support has the effect that the players are able to reach
the target quality level 10 at 7234 kbit/s. The difference between
the two queueing implementations is minimal in terms of mean
quality level. Without background traffic, the mean quality in one
level higher when using client queues: 9.10 (σ = 3.08) with one
video queue, versus 10.43 (σ = 1.45) with separated client queues.
With background traffic, the two queueing implementation perform
similarly: 9.31 (σ = 2.95) with one video queue, versus 9.74
(σ = 2.64) with separated client queues.

Figure 6 does indicate a difference in the range of representations
that are selected. To evaluate the stability of the stream we look

Figure 5: Throughput of background traffic is brought back to
8.4 Mbit/s when DASH players are active

Figure 6: Comparison of the quality levels for different QoS
configurations, with and without background traffic

at the number of switches, the time between switches, and the
number of quality levels jumped. Figure 7 shows the number of
switches for the four players combined. As expected, adding a
single queue does not lower the number of quality switches. The
traffic control mechanism still provides the players a single band
which can be freely divided among the players. The video queue
keeps the background traffic from interfering, but the players still
have to compete with each other for bandwidth.

Figure 7: Number of switches in video quality given different
QoS configurations, with and without background traffic



Enabling separate queues for different players also does not
eliminate switches from occurring, nor does it help the players to
stabilize at a certain rate. Figure 8 shows the distribution of the
time between two switches, weighted by the number of segments
in each interval without a switch. From this we can obtain that in
none of the scenarios the DASH players were able to stabilize at a
single quality level for a longer time, and that the quality switches
are thus distributed over the length of the video. Separated video
queues do not give longer intervals without a quality switch.

Figure 8: Probability density of the time between two switches
for different QoS configuration, with and without background
traffic

Figure 9: Probability density of switch sizes for the different
QoS configurations, with and without background traffic

With regards to the size of the switches, using client queues
reduces the size of quality switches, as depicted in Figure 9.
A smaller switch will be less noticeable by the users and thus
improves stability. Guaranteeing a minimum throughput for each
player thus have a positive effect on the quality of experience for
the stream. Nevertheless, this effect diminishes in the scenario with
background traffic.

We ascribe this to the fact that we are using a Wi-Fi network
in our evaluations. In most wired networks down- and upstream
traffic are separated and do not affect each other. However, in
a Wi-Fi network the same transmission channel is used for both
down- and upstream. When the network becomes more loaded it
takes longer for the clients to successfully make a request for a
next video segment. New video segments are only requested when
the download of the previous segment is completed, reusing the
TCP connection to the server. Latency between sending out the
segment request and the actual start of the download of the segment
negatively affects the effective download speed.

In the cases with background traffic enabled, the load on the
Wi-Fi network reached its maximum. In these scenarios, it
takes more time for the clients to access the medium and request
segments. Both the single video queue and the client queues
work only one way, and the node must still compete for the
medium. Therefore, they will not improve the upstream traffic.
The fluctuations and delay of the segment requests, caused by the
heavy load on the Wi-Fi network, cannot sufficiently be removed
by adding QoS queues. Therefore, the DASH player will react to
these fluctuations causing more instability.

5.3 Combining explicit adaptation assistance
with dynamic QoS support

When explicit adaptation assistance is combined with quality
of service support in the network, the user can benefit from the
advantages from both the mechanisms. The explicit adaptation
assistance eliminates the uncertainty and the unfamiliarity of the
players with the network. The dynamic QoS support in the
network is matched to the target bitrates that are sent to the players.
Therefore, the DASH players are not sensitive to the background
traffic and show good performance.

In this section we only focus on the scenario with background
traffic. Figure 10 shows that enabling quality of service in
the network significantly increases the quality level, and when
combined with application level assistance in the player, the stream
show almost no variation.

A similar effect is also visible when comparing the number of
quality switches, as displayed in Figure 11. It shows that our

Figure 10: Comparison of only using QoS support with
combining QoS support with explicit adaptation assistance in
scenarios with background traffic



Figure 11: Comparison of the number of quality switches
with and without adaptation assistance for the different QoS
configurations

architecture considerably reduces quality switches and provides the
viewers a stable streaming experience. The only time that players
make quality switches and are not streaming at the target bitrate,
is at the beginning of the stream. Once a player has loaded the
manifest it will share the stream’s detail with the manager, and it
will start downloading segments based on the built-in adaptation
mechanism. Only when the player has received a target bitrate from
the Service Manager, and it reaches sufficient download speed and
buffer level, the player is confident enough to follow the adaptation
assistance.

Alternatively, players could have immediately followed the
Service Manager’s target bitrate. However, we have chosen not
to implement this for two reasons. The first reason is that it
provides players more freedom in starting the stream. Selecting
lower bitrates in the beginning increases the buffer fill levels and
allows to start streaming sooner. Secondly, the manager can
only provide guarantees on the local network, but cannot ensure
sufficient capacity at the server or on other network links. Starting
at the target bitrate from the beginning could have caused stalls in
the video, which should be avoided at all costs.

The effect of this decision for the DASH.js based players is
shown in Figure 12. It shows that the players download between
16 and 24 segments (i.e. between 32 and 48 seconds of video) in
a bitrate that is not the target bitrate. However, once the players
hit the target bitrate, they stabilized and all further segments are
requested for the target bitrate.

Figure 12: Number of segments downloaded before the streams
stabilize

5.4 Node at network edge results
In the previous experiments all nodes where relatively close to

the access point. For none of the nodes, the distance to the access
point was such to be a cause for degraded network performance.
However, in many Wi-Fi deployments it is common that there is a

node that is further away from the access point. For such a node it
would not be possible to use the full capacity of the Wi-Fi network.
Video streaming, even with the high quality DASH video that we
have prepared, does not require the full capacity of the network.
We consider the scenario where a node that is further away from
the access point can stream at high bitrates, but only when it is
the only active node in the network. However, when there is other
traffic in the network, the network performance of this node will
decrease and the DASH player will have difficulties to maintain the
high quality stream.

In this experiment the node is located at such a distance from
the access point that it is able to stream at the highest quality
levels, but it does not have any remaining capacity left. The
streaming performance for this node is shown in Figure 13 on
the left. It displays that the node alone selects the high quality
segments. When the other DASH players become active (Figure 13
center), the quality of the DASH stream of the node further away
is significantly lower. Adding QoS support in the network cannot
restore the streaming performance of this player. The video quality
is further degraded in the scenarios with background traffic. In these
scenarios the video quality is degraded to the lowest video levels.
The DASH players that are close to the access point perform similar
to the previous evaluations, but are not shown for brevity.

Figure 13: Video quality levels for the node further away from
the Wi-Fi access point given QoS support in the network (left:
one node, middle: all video clients, right: video clients and
background traffic)

This shows again that in a Wi-Fi network the upstream traffic
from time-sensitive applications – such as DASH streaming –
should have enough room to get through without much delay.
Part of this can be accomplished via explicit adaptation assistance,
because it works in two ways. On the one hand it tells the players
that they don’t have to select the lower bitrates and that fluctuations
in bandwidth are only temporary. On the other hand, it prevents the
players from selfishly increasing the video capacity and putting a
too large demand on the network.

Figure 14 on the left shows that without background traffic,
the node further away from the access point streams at the same
quality level as the nodes that are close to the access point. With
background traffic the network is loaded too much to reach the
same quality. However, compared to the setting without assistance,
the quality level is almost doubled and the number of switches in
quality is reduced, as shown in Table 1.



Figure 14: Quality levels for the node further away from the
access point with explicit adaptation assistance enabled (left:
without background traffic, right: with background traffic)

Table 1: Mean quality and number of quality switches for the
node further away from the access point, with backgr. traffic

Quality level (σ) Nr. switches
No assistance
No QoS 2.54 (3.18) 89
Video queue 3.66 (3.29) 85
Client queues 2.95 (3.45) 82
Assistance
No QoS 2.26 (3.02) 76
Video queue 6.51 (3.09) 53
Client queues 5.98 (3.05) 43

The quality of the stream of the node further away could
potentially be improved by lowering the throughput of the
background traffic via the QoS mechanism. However, it is up to
the users or the network administrator to decide whether further
limiting the background traffic weighs up to the increase in video
quality for a single user.

6. CONCLUSION
Dynamic adaptive streaming over HTTP is a popular technology

for streaming video over the Internet. The reason for its popularity
is the simplicity of the protocol and of the underlying transport
mechanism using HTTP. DASH allows to do adaptive streaming
and provides content providers scalable distribution in which off
the shelf HTTP servers can be used in combination with content
delivery networks. The downside of using HTTP as transport
mechanism is that it creates a mismatch between the type of traffic
and the used protocols. TCP shows to underperform when it is
combined with the bursty traffic that DASH creates.

Novel networking paradigms, such as software defined
networking, can be leveraged to reduce the effect of the protocols on
network performance. An important aspect of the architecture that
we presented in this paper, is that the competition for bandwidth, for
which it is shown that DASH players lose too much bandwidth, is
eliminated. The benefits of the DASH protocol stack remain intact,
while the drawbacks are overcome by adding a simple interaction

mechanism between the DASH players and the in-network Service
Manager. This keeps our architecture simple, but it is powerful.

Our SDN-based architecture offers DASH players two
mechanisms for improving the streaming performance: explicit
adaptation assistance by informing the players about optimal
bitrates, and via dynamic quality of service support. This
approach has the advantage over fully client-side adaptation
because the Network Controller and Service Manager have more
knowledge about the network, the current network activity, and
other DASH players. That makes that the Network Controller
and Service Manager can make network-wide optimization
decisions. Furthermore, our architecture is based on DASH and
SDN, techniques that have shown to be scalable. We expect
our architecture to scale as well, because in bigger network
infrastructures its components can be distributed over multiple
network devices and controllers.

In perfect conditions, without other bottlenecks between the
server and the DASH players, our architecture provides highly
stable and high quality video. If there are other bottlenecks, the
players will decide not to follow the Service Manager’s target
bitrate. Therefore, our architecture will increase the streaming
quality when it can, and DASH players will perform the same as
the state-of-the-art players in less ideal conditions. A limitation
of our architecture is that it requires DASH players to co-operate
with the Service Manager. Otherwise, the players cannot benefit
from assistance and network resource provisioning, and they are
potentially assigned to the background queue.

By means of a thorough evaluation in our Wi-Fi testbed, we
demonstrate the impact of these two mechanisms. We show that
although both mechanisms improve the streaming performance,
neither of the two are sufficient to provide a stable streaming
experience when used on their own. Only when combining these
two mechanisms we can provide users stable streaming at high
video quality. We summarize the insights that we obtained in this
study in the following paragraphs.

Explicit adaptation assistance enables stable streaming and fair
sharing of network resources between players, but only in networks
that are solely used for DASH streaming. However, it does not
prevent DASH streams to underperform in busy networks (i.e. with
background traffic), as a result of the mismatch between TCP and
the bursty nature of DASH traffic. The underperformance of the
DASH streams can be restored by adding quality of service support
in the network. Dynamic quality of service support increases the
video quality up to the desired level, but the DASH players will
still react to slight variations in throughput, causing instability.

Providing DASH players separate queues with a minimum rate
guarantee does not reduce the number of quality switches, but the
size of the switches is smaller compared to a single video queue
that is shared among the players. The only way to eliminate the
quality switches is to combine explicit adaptation assistance with
QoS support. Using this setting, DASH players stream stable at
the desired quality level in scenarios without and with background
traffic. However, in the setting where both mechanisms are active,
it is not required any more to use separated queues.

In a Wi-Fi environment, nodes that are further away from
the access point are hindered in steaming. Our architecture can
restore streaming performance of these nodes in a network without
background traffic, and significantly improve the video quality in
environments with background traffic.

In future research we will work on extending our architecture to
Wi-Fi specific issues. We will investigate which mechanisms are
available, for example to improve the video quality of the node that
is further away from the access point, or to handle interference from



other Wi-Fi networks. Moreover, we will investigate the impact
on DASH players that are not modified to interact with the service
manager. Finally, we will focus on the development of bandwidth
sharing policies, where we will not only focus on the performance
of DASH streams, but also on the effects of a certain policy on
background traffic.
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