
Demonstrating ATSC ROUTE-DASH Delivery 
Waqar Zia 

Nomor Research GmbH 
Brecherspitzstr. 8, 81549, Munich, 

Germany 
+49 89 978980 27 
zia@nomor.de 

Thomas Stockhammer 
Qualcomm CDMA Technologies 

GmbH 
Franziskanerstr. 14, 81669 München, 

Germany 
+49-6196-9993-108 

tsto@qti.qualcomm.com 

Kent Walker 
Qualcomm Technologies, Inc. 

5775 Morehouse Dr., San Diego, CA 
9212, USA 

+1-858-651-7228 
gwalker@qti.qualcomm.com 

   

ABSTRACT 
DASH content delivery via ROUTE is being standardized within 
ATSC and is supported by the interoperability efforts within 
DASH-IF. The goals achieved by this work include effectively 
demonstrating the key technological features of the nascent 
standards on a variety of platforms. These features include 
demonstration of hybrid services delivery and customized 
advertisement insertion, etc. At the same time, this demonstration 
is accomplished using open-source tools, content, and components 
to help foster harnessing and utilizing the full potential of these 
technologies in the industry. All of this is supplemented by near-
product grade stable and optimized performance demonstration.  

CCS Concepts 
• Information systems➝ Information systems ➝ Information 
systems applications ➝ Multimedia information systems ➝ 
Multimedia streaming • Information systems ➝ Information 
systems applications ➝ Mobile information processing 
systems  

 

Keywords 
DASH; ROUTE; Broadcast; Hybrid Services; Demonstration 

1. INTRODUCTION 
In the recent years, industry has focused to utilize Dynamic 
Adaptive Streaming over HTTP (DASH) [4] format for broadcast 
media. The well-known reason is a large set of existing 
multimedia content in DASH format, and hence it is well suited to 
serve as a native format for delivery over broadcast. The content 
can then be played back using well-known DASH clients, 
minimizing the investment and efforts required to realize the 
content generation and consumption framework, while at the same 
time optimizing the overall broadcast system resource usage for 
multimedia delivery. 

Several standardization bodies including European 
Telecommunications Standards Institute (ETSI) for their DVB 
standards [3], 3GPP for eMBMS [2], and most recently Advanced 
Television Systems Committee (ATSC) have worked on enabling 
DASH delivery via broadcast. Although previously File Delivery 

over Unidirectional Transport (FLUTE) protocol has been utilized 
to enable DASH broadcast delivery [2], this protocol was not 
designed for real-time object delivery required for broadcast 
purposes. To this end, ATSC is employing a new protocol named 
Real-time Object delivery over Unidirectional Transport 
(ROUTE) [1] which overcomes several hurdles faced by FLUTE 
for real-time object delivery. 

 
Figure 1: ATSC 3.0 “Conceptual protocol stack” [1] for 

ROUTE-DASH delivery 

Figure 1 shows the relevant section of the conceptual protocol 
stack for an ATSC 3.0 receiver [1] where DASH delivery via 
ROUTE can enable 

 Broadcast only, 
 Hybrid broadcast/broadband, and 

 Broadband only 
service delivery. The detailed specification for realizing such 
services is provided in [1]. All these service configurations have 
been realized and demonstrated for ROUTE-DASH, as explained 
in the following sections. 

2. DEMONSTRATOR ARCHITECTURE 
2.1 Basic Sender and Receiver Setup 
 

Figure 2 shows the basic sender and receiver configuration. On a 
high level, 2 channels are being sent, each with 1080p 
H.264/AVC video and HE AAC v2 audio. The data is sent over a 
local-area network via IP multicast, and a receiver can tune into 
one of the channels. The following sections provide more details 
about the sender and the receiver. 

 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 
uses, contact the Owner/Author.  

Copyright is held by the owner/author(s). 

MMSys'16, May 10-13, 2016, Klagenfurt, Austria 

ACM 978-1-4503-4297-1/16/05. 

http://dx.doi.org/10.1145/2910017.2910640 

HTTP  

Applications   (HTML 5/JS)

Broadcast

UDP

IP

DASH Player/Decoders

Broadband

TCP

NRT
 Files

All Sig‐
naling
Objects

NRT
Files

R
O
U
TE
‐s
pe

ci
fi
c 

Si
gn

al
in
g

DASH Segment (ISO 
BMFF)

EME/CENC

ROUTE
SLT

HTTP Proxy



 

Figure 2: Basic sender and receiver configuration 

 

2.2 Sender Setup 
 

 
Figure 3: Sender architecture 

Figure 3 shows the basic sender architecture. The design can input 
static DASH content in live profile as input. As shown here, two 
sets of DASH content, each representing part of an ATSC service 
can be fed into the system. Optionally, an advertisement content 
(also static, live profile) can be inserted into the main content at a 
configurable time. 

Upon a user interaction with the application to start the service, a 
static to dynamic conversion module processes the static content: 

1. The MPD is converted to dynamic according to the current 
time of start of sending. 

2. Ad content reference, if requested, is inserted in the main 
MPD at its configured time. 

3. Timing files are generated for ROUTE sender module that 
sends DASH Media Segments according to this timing 
information. 

The ROUTE sender then pushes the content via IP multicast 
according to the service configuration information provided to the 
sender-side application. 

2.3 Receiver Setup 
 

Receiver

ROUTE 
Receiver

Application

2

HTTP Server

DASH 
Content DASH Player

1 5

4

63
Ad,

Alternate 
Audio

 
Figure 4: Basic receiver architecture 

Figure 4 shows the basic receiver architecture. The interfaces are 
numbered according to their role as described with the 
corresponding numbering, in the following. In the following 
context, a tune-in is defined as the time when MPD, initialization 
information and at least one DASH Media Segment for each 
adaptation set is already received. 

As the user selects the channel to play via the application, 

1. The application configures the ROUTE receiver with IP 
addresses, ports, Transport Session Identifiers (TSI). 

2. ROUTE receiver starts reception of the multicast data. 

3. ROUTE places the delivery objects in a local HTTP 
server, it could be assisted via the application to 
complete this action. 

4. The application monitors the reception of data: 

i. Waits for the MPD reception. 

ii. Based on MPD information, monitors when a 
“tune-in” has happened 

iii. Based on tune-in time, process MPD (further 
details in Section 2.5) 

a. Update DASH MPD@ 
availabilityStartTime (AST) based 
on tune-in time, and the duration of 
the media segments. 

b. Update  Period@start, 
SegmentTemplate@startNumer, 
SegmentTemplate@personationTim
eOffset 

5. Start playback/play control (pause etc.) 

Channel change: 

If the user interacts with the application to change the channel, the 
following actions happen: 

• Application pauses the DASH player via 5, 

• stops ROUTE reception via 1, 

• clear DASH content via 4, 

• Starts from step 1. 

For the receiver setup to work properly, the following must hold: 

i. Client, server have to be in time sync. 

ii. All processing at the receiver, including in the 
application has to be sub-second accurate. 

 

Sender

DASH 
Channel 1

DASH 
Channel 2

IP Multicast

ROUTE 
Sender

Receiver

ROUTE 
Receiver

Application

HTTP Server

DASH 
Content

DASH 
Player



2.4 MPD-Less Startup 
 

Receiver

ROUTE 
Receiver

Application

2 Browser (MSE)

1 3

4

 
Figure 5: Receiver setup for MPD-less startup 

ATSC specification [1] allow for sufficient information signaling 
that the tune-in process at the receiver can be completed without 
waiting for the reception of the MPD itself. This is also enabled 
by ROUTE specification by the specified Media Delivery Event 
(MDE) mode. 

For this case, the ROUTE receiver is directly interfaced with the 
media decoders to push the media data to the decoders as soon as 
it is received. This allows for optimization in tune-in time. 

 

2.5 MPD PROCESSING 

Tune-
i  1

Tune-
i  2

Sender-
side 

Period 1: Normal 
Content

Period2: Ad
Period 3: Content 

continuation 

Normal 
Content 

(trimmed)
Period2: Ad

Period 3: Content 
continuation 

Ad 
(Trimm

ed)

Period 3: Content 
continuation 

t

 
Figure 6: MPD at the sending end (top) and its processing for 

various tune-in times 

 

As the receiver tunes into the content as described in Section 2.3, 
a conforming DASH player cannot play the content as it is, 
because the MPD is representing a data with segments before the 
tune-in time actually missing at the receiver. Hence, as described 
in Section 2.3, a Period is 

a. Left intact if its Period@start is after the tune-in time. 
b. Trimmed according to the tune-in time if the tune-in 

falls between the start of this Period and the next, as 
shown in Figure 6. 

c. Discarded if the tune-in is at or after the start of the next 
Period. 

2.6 Ad–Insertion and Customization 
 

As discussed in preceding sections, and advertisement can be 
inserted into the main content by using multiple periods. At the 
receiver side, this Ad can be replaced by another Ad if client is 
customized as such. This would mean replacing the Ad period in 

the MPD with another period that points to a broadband address, 
where the Ad data is then fetched from an Ad server. 

 

2.7 Hybrid Delivery 
 

As described in Section 1, DASH delivery via ROUTE can enable 
hybrid services. In this case, some components in the MPD may 
point to broadcast delivery, while others (e.g. an alternate 
language audio track, a different video view, subtitles, etc.) may 
point to broadband resource. Such signaling may be embedded in 
the content from the sending side, but if allowed by the content 
provider, such compositions can also be done on the receiver side 
by updating the MPD as required. 

Hybrid delivery can also be used to recover segment lost over the 
broadcast channel. Since DASH is loss-intolerant, such a lost 
segment must be recovered to enable service continuity. This 
recover can be done via broadband connection. For a connected 
receiver, for example, multiple base URLs can be signaled to the 
receiver. One of them is pointing to the broadcast, and the other to 
the broadband location. In this case, if the client received a HTTP 
404 error for one or more segments of the broadcast content, 
implying that the segment is lost, it can attempt to recover this 
segment from broadband. 

 

2.8 System Setup and User Interface 
 

The setup for demonstration is shown in Figure 7. The sender is a 
Linux based machine, multicasting the sending data via multicast 
capable router. The receivers demonstrated are based on Android 
or PC (Windows/Linux). The whole setup can also be run on a 
single device if required. 

ROUTE Sender

Multicast over 
802.11ac

Wired LAN

Receiver, Application

 
Figure 7: Overview of the system for demonstration 

The source code for the complete setup is made available [5] via 
open-source licensing. 

DASH source content is based on Creative Commons license (e.g. 
Tears of Steel, Sintel, etc.) DASH encoding is done by using 
FFmpeg [6] and MP4Box [7]. Some of the main parameters of the 
content are tabulated in Table 1. 

Table 1: Content parameters 

Type Parameter Value 

Content Duration 12 min 14 sec 

DASH Segment Sizes 500 msec, 1 second 

Video Codec H.264/AVC 

Resolution 1920x1080p 

Frame rate 24 fps 



Bitrate 8 Mbps 

Audio Codec AAC LC 

Channels 2 

Bitrate 64kbps 

 

 The application and static to dynamic conversion tool is 
implement using web-based languages (Python, PHP, JavaScript). 
ROUTE sender and receiver is implemented in C++, and is based 
on the MAD FLUTE open-source project [8]. 

On the receiver side, an application based on JavaScript and PHP 
runs the setup. Apache HTTP server [10] hosts the local content, 
which can be played by DASH player [9], [11] via MSE-
supporting browsers, such as Google Chrome browser.  

2.8.1 Running the Demo 
 

On the sender-side user interface the demonstration is run by  

 Selecting the desired network interface. 

 Selecting the desired Ad-insertion time. 

And then turning the service slider to “on” position. 

On the receiver demo page, turning the Unicast slider to “on” 
position enables the hybrid service, by enabling playback of 
multi-component audio, as shown in Figure 8. 

In the player controls, selecting the gear icon will show the 
available audio options as shown in Figure 8. By default, using 
broadcast only (Unicast/Broadband disabled), both channels will 
show a single audio track (English). When the Unicast slider is 
turned to “on”, a second Italian audio track will appear in options 
for Tears of Steel (Channel 1). Selecting it will change the audio 
language. The default audio language selected after a tune-in is 
English. A synchronous audio-video playback is demonstrated. 

 
Figure 8: Receiver User Interface 

3. PERFORMANCE 
Based on the existing setup, using off-the-shelf, mid-range 
hardware, the performance is assessed based on Tune-in delay 

 

Where  is measured for 32 tune-in attempts initiated 
at pseudorandomly selected time instances.  is measured as the 
mean segment reception delay. Figure 9 shows the performance 
results.  

  

Figure 9: Performance results based on tune-in delay 

 

The delays combine all theoretical and system-specific issues. The 
latter come from the operating system related delay issues, and 
hence it can be seen that halving the segment duration to 500 
msec gives only ~30% performance improvement. MPD-less 
startup can provide an additional performance improvement of up 
to 40%. 

4. Acknowledgement 
Development work for this demonstration was funded by 
Qualcomm Inc. 

5. REFERENCES 
[1] A/331, ATSC Candidate Standard: “Signaling, Delivery, 

Synchronization, and Error Protection,” 1.2016. 

[2] 3GPP TS 23.246 “Multimedia Broadcast/Multicast Service 
(MBMS); Architecture and functional description” 12.2015. 

[3] ETSI TS 103 285 V1.1.1 “Digital Video Broadcasting 
(DVB); MPEG-DASH Profile for Transport of ISO BMFF 
Based DVB Services over IP Based Networks,” 5.2015. 

[4] ISO/IEC 23009-1 “Information technology — Dynamic 
adaptive streaming over HTTP (DASH) Part 1: Media 
presentation description and segment formats,” 2nd Ed, 
2014. 

[5] ATSC ROUTE DASH Demonstrator [online]: 
https://github.com/waqarz/ATSC_ROUTE 

[6] FFmpeg [online]: https://www.ffmpeg.org/ 

[7] MP4Box [online]: https://gpac.wp.mines-telecom.fr/mp4box/  

[8] MAD Project's Home Page [online]: mad.cs.tut.fi/ 

[9] dash.js [online]: https://github.com/Dash-Industry-
Forum/dash.js/ 

[10] Apache HTTP Server [online]: https://httpd.apache.org 

[11] Bitdash [online]: www.dash-player.com/ 

 

 


