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ABSTRACT
In this work, we propose an online adaptation logic for Dy-
namic Adaptive Streaming over HTTP (DASH) clients, where
each client selects the representation that maximize the long
term expected reward. The latter is defined as a combi-
nation of the decoded quality, the quality fluctuations and
the rebuffering events experienced by the user during the
playback. To solve this problem, we cast a Markov Deci-
sion Process (MDP) optimization for the selection of the
optimal representations. System dynamics required in the
MDP model are a priori unknown and are therefore learned
through a Reinforcement Learning (RL) technique. The de-
veloped learning process exploits a parallel learning tech-
nique that improves the learning rate and limits sub-optimal
choices, leading to a fast and yet accurate learning process
that quickly converges to high and stable rewards. There-
fore, the efficiency of our controller is not sacrificed for fast
convergence. Simulation results show that our algorithm
achieves a higher QoE than existing RL algorithms in the
literature as well as heuristic solutions, as it is able to in-
crease average QoE and reduce quality fluctuations.

CCS Concepts
•Computing methodologies → Sequential decision mak-
ing; Markov decision processes; •Information systems→
Multimedia streaming;
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1. INTRODUCTION
In the last few years, video streaming has rapidly be-

come the dominant source of traffic over the Internet [1].
To face this growing demand of media traffic, new efficient
video streaming techniques have been developed, such as the
popular Dynamic Adaptive Streaming over HTTP (DASH),
which works over the already deployed HTTP/TCP proto-
col for video transmission. The key concept behind DASH
is that each video is encoded at different bitrates and resolu-
tions, which results in several representations that are stored
on servers. These representations are divided into small seg-
ments or chunks (typically 2s long) which are encoded in-
dependently. These segments are then made available to
clients, which have the freedom to select representations ac-
cording to resource availability and to switch streams dy-
namically at the chunk level. This so called adaptation logic
is carried out independently for each client, in a distributed
way, with the ultimate goal to select the representation that
achieves the best Quality of Experience (QoE) for the given
resource availability. However, DASH adaptation logics are
usually greedy, suffering from large quality variations and
playback buffer underflow at the receivers, which drastically
affect the quality experienced by users. Most of the current
research on adaptive streaming aims at overcoming these
issues.

In most adaptation logics, clients request the best seg-
ment (i.e., the one with the highest quality) that prevents
rebuffering. This, however, comes at the price of frequent
quality switches that highly affect the QoE [2], since the
adaptation logic mainly follows network fluctuations. Sev-
eral optimizations have been proposed with the final goal
of limiting bitrate variations between successive segments.
However, preserving a constant bitrate of the selected rep-
resentations does not necessarily translate into a constant
quality level [3] if the video complexity changes over time.
This means that video complexity and bandwidth fluctu-
ations need to be jointly taken into consideration in the
adaptation logic. Moreover, while the playback buffer can
absorb some of the bitrate variations, rebuffering events are
still frequent in highly dynamic network environments. The
only viable solution to preserve a good buffer level while
maximizing QoE is to implement foresighted optimization
in the adaptation logic [4]; however, most of the existing
optimization techniques require a priori information about
the dynamics of the system, which are usually not avail-
able in practice. An efficient online adaptation logic should
therefore be able to learn the best representation selection
strategy that maximizes the long term reward.



In this work, we propose an online optimization framework
for representation selection at the DASH client. We assume
that the channel bandwidth experienced by the users as well
as the video characteristics vary over time following a Marko-
vian model, which is not known a priori by the clients. We
formulate the representations selection problem as a Markov
Decision Process (MDP). We further define a novel objective
function that takes into account not only the experienced
quality, but also the quality variations and the rebuffering
states. We then design an online DASH controller, which
learns online the temporal evolution of the system. Our al-
gorithm is able to select the best representation, which is
defined as the one that maximizes the long term reward,
i.e., the one that maximizes the quality experienced over
time and yet limits both the quality variations and rebuffer-
ing events. We carefully define the Markov states in the
MDP formulation such that they are as descriptive as possi-
ble, while maintaining a low number of total states. We also
exploit the particular structure of the problem to parallelize
the learning process and speed it up by minimizing the num-
ber of non-optimal selections. Finally, we carry out Matlab
simulations to compare the proposed framework with more
conventional DASH controllers. Simulation results show the
gain of the proposed adaptation logic with respect to adapta-
tion logics that do not implement any learning strategy. The
proposed controller is able to provide a more stable quality
level by reducing the quality fluctuations experienced over
time, and to quickly react to variations in the network or
in the video characteristics. We then compare our model
with the other Reinforcement Learning (RL)-based DASH
controller available in the literature [5]. We show the perfor-
mance gain of our new algorithm due to an improved MDP
model and better learning techniques. The proposed algo-
rithm has the main advantage of performing a fast learning
that allows the system to quickly converge to optimal selec-
tion strategies. This leads to an improvement both in terms
of quality and of quality variations experienced by clients.

Previous works [5, 6] usually consider a trade-off between
convergence speed and strategy optimality. They have to
choose between a simplified (and less efficient) state char-
acterization and more complex (and slower) controllers. To
the best of our knowledge, our work is the first to over-
come this tradeoff by proposing an online learning strategy
for DASH clients able to i) use sophisticated reward metrics
that maximize the QoE and still limit quality fluctuations
and rebuffering events; ii) consider an MDP based solution,
which is complete (in its state definition) and yet fast in
learning novel system conditions. The improved learning
rate and the reduced complexity make the proposed algo-
rithm suitable for implementation at DASH clients’ side.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the current state of the art on DASH adap-
tation logics, while Section 3 defines the system model, and
Section 4 characterizes the video representation selection
optimization problem. We describe the proposed solving
method in Section 5, and provide the simulation parameters
and results are in section 6. Finally, we conclude the work
in Section 7.

2. RELATED WORKS
We now describe the most relevant works published in

the literature on DASH client-side adaptation strategies. In
particular, we provide the works focusing on reducing the

quality variations at the client side. We refer the reader to
[7] for a comprehensive review of QoE issues and adaptation
algorithms for DASH clients.

Adaptation logics can be categorized in i) heuristic-based
methods and ii) optimization-based methods.

In the first category, one of the most relevant works that
include quality variations in the QoE definition is the Probe
and Adapt (PANDA) algorithm [8]. It is based on heuris-
tic rules that try to maximize quality while preventing the
selection of high bitrates that might not be sustainable by
the network. This effectively reduces the bitrate variations
in stable network conditions. However, the algorithm is less
effective when the video complexity changes quickly. More-
over, the algorithm does not always fully utilize the available
capacity. As shown in [9], a prediction of the system evo-
lution is fundamental to improve the system performance.
The authors propose a method which applies the Microsoft
Smooth Streaming (MSS) heuristic rules, but learns the pa-
rameters of the controllers over time. This algorithm favors
stability over efficiency. However, the heuristic is not fore-
sighted enough to exploit the bandwidth aggressively with-
out experiencing frequent rebuffering events, leading to a
tradeoff between stability and efficiency.

To improve efficiency whil preserving stability, an opti-
mization problem is needed instead of heuristics. In [4],
the authors propose a receding horizon optimization for the
representation selection aimed at maximizing their quality
while reducing quality variations. The proposed adaptation
logic leads to good and stable quality values during the video
streaming session. However, the algorithm requires a priori
information on the future status of the system, in terms of
video complexity and network resources. In practice, this
future information cannot be known a priori and needs to
be learned by the system. Other works use MDP models
in similar ways [10, 11], but still assuming some a priori
knowledge about system statistics.

Another interesting work [12] uses MDPs to keep a high
and stable QoE in an online learning adaptation logic: the
client gathers bandwidth statistics and improves its system
model, which is then used to solve the MDP with dynamic
programming. As highlihghted by the authors, the main lim-
itation of the proposed scheme is its computational complex-
ity. Solutions are proposed in [12] to reduce the complexity
issue but at the price of having an unacceptable number of
rebuffering events or reducing the problem to offline opti-
mizations.

To the best of our knowledge, only the works in [5, 6]
address online reinforcement learning DASH control strate-
gies based on optimization problems rather than heuristics.
The authors designed a Q-learning based algorithm [6] that
learns the optimal representation selection strategy. The
online algorithm uses a quality-based reward function that
highly penalizes rebuffering events. The algorithm substan-
tially outperforms heuristic-based strategies, but the model
parameters are tuned to work for slow-varying channels, and
the extension to more dynamic conditions is not straightfor-
ward. While this algorithm is pretty efficient, it is unfortu-
nately very slow in adapting to new network conditions or
different video dynamics. To overcome this limitation, the
authors propose a faster learning algorithm called FA(Q)
[5]. The authors substantially simplify the MDP model,
improving the learning rate of the process. However, this
simplification leads to a suboptimal streaming performance.



Figure 1: Summary of the problem scenario

The learning algorithms in [6, 5] tradeoff between learning
speed and model accuracy: while the earlier algorithm uses
a cumbersome model that needs extensive training and has
no flexibility to adapt to new environments, the FA(Q) algo-
rithm uses an MDP model that is too simple to capture the
environment efficiently, so that the overall QoE degrades.
The goal of our work is to overcome the current limitations
by using efficient learning strategies to have both a complete
model with high descriptive power and fast convergence to
the optimal policy.

3. SYSTEM MODEL
As depicted in Fig. 1, we consider a DASH client down-

loading successive segments of a given video sequence from
a server. For each segment, the client optimally selects the
representation to download, namely, the best coding rate
and resolution for the video segments. We denote by at ∈ A
the selected representation for the t-th segment Lt of the
video of interest, with A being the set of representation seg-
ments available at the server. The quality of the segment Lt
in its representation at is

qt = g(at, Dt) (1)

with g being the rate quality curve that depends on the
complexity Dt of the video segment Lt. The latter reflects
the complexity of the content in the scene. For example, a
blue-sky sequence has low complexity, while a very dynamic
sequence with new appearing objects has a higher complex-
ity. In general, the evolution of the video complexity cannot
be known a priori. However, in the following we assume
that once the segment Lt is downloaded, the complexity
Dt+1 of the next segment Lt+1 is known. This complex-
ity can be available in the Media Presentation Description
(MPD) file, which contains information about the available
representations and can be updated over time, especially
in live-streaming scenarios. Otherwise, the complexity can
be accurately predicted since the complexity of consecutive
scenes is genenally highly correlated.

We define the client QoE given the selection at for the
segment Lt as follows:

rq(at, Dt, qt−1) = qt − β|qt − qt−1| (2)

= g(at, Dt)− β|g(at, Dt)− qt−1|

which is the weighted combination of the current segment
quality and quality variations (a similar model for QoE has
been proposed and validated in [13]). The parameter β is a

positive weight factor that balances the importance of the
quality variations in the QoE evaluation.

The download time ft of a representation at for the seg-
ment Lt depends on the encoding rate of the chosen rep-
resentation at as well as on the available channel capac-
ity. We denote ht the average bandwidth experienced while
downloading representation at, and the download time as

ft = f(at, ht) = S(at)
ht

, where S(at) is the size in Bytes of
the selected segment at. Note that ht is not known by the
client before downloading the chunk, but it can be evalu-
ated from the encoding bitrate of at when the downloading
time ft is known. We further consider the variations of the
channel bandwidth to be Markovian, with a p(ht|ht−1) tran-
sition probability between consecutive channel states. The
Markovian channel assumption is reasonable since it covers
a wide range of scenarios and it has already been successfully
adopted in other learning works [6, 5]. The model still ex-
tends to non-Markovian channels, where the learned policy
will be suboptimal.

Finally, we denote by Bt the amount of video time that is
stored in the playout buffer, namely, the buffer level. The
value of Bt is computed just before sending the request for
segment at and it is expressed in seconds. Denoting by TP
the playing video time of every segment (e.g., 2s), we can
define the evolution of the buffer level as:

Bt+1 = Bt + TP − f(at, ht), (3)

which means that the buffer level Bt decreases by f(at, ht)
when downloading the representation at of the segment Lt.
When the download is complete, the new segment is added
to the buffer, which increases by the segment duration TP .
Ideally, f(at, ht) should be lower than Bt to avoid rebuffer-
ing. That leads to the condition Bt ≥ f(at, ht) or, equiva-
lently, Bt+1 ≥ TP .

In the following, we show how DASH clients can learn
the best selection strategy that improves the long-term QoE
while avoiding rebuffering.

4. OPTIMIZATION PROBLEM
In this section, we formulate the optimization problem

that needs to be performed at the client side for the optimal
representation selection.

A DASH client requests the representation aτ for the seg-
ment Lτ by solving online a foresighted optimization aimed
at maintaining a high and stable QoE level while respect-
ing the buffer constraint. Ideally, this means finding the
optimal set of actions A?, which maximizes the long term
QoE of the user among all possible action vectors A =
[aτ , aτ+1, . . . , a∞]. More formally,

max
A

{
∞∑
t=τ

γt−τ [g(at, Dt)− β|g(at, Dt)− qt−1|]

}
s.t. Bt − f(at, ht) ≥ 0, ∀t. (4)

where γ ∈ [0, 1) is an exponential discount factor on future
rewards, and the constraint imposed on the playback buffer
guarantees that the current action at does not lead to a
rebuffering event.

While the optimization problem of Eq. (4) is exact, it re-
quires the knowledge of f(at, ht). In practice, the function
f(at, ht) depends on the channel conditions that will be ex-
perienced during the next segment download. Therefore,



the function f(at, ht) is known by the client only after the
action at is taken. The hard constraint imposed in Eq. (4)
cannot be imposed in practice. Thus, we consider a soft
constraint that avoids actions with a large rebuffering prob-
ability. By adding the soft constraints, we get the following
optimization problem:

max
A

{
∞∑
t=τ

γt−τ
[
rq(at, Dt, qt−1)− rb(Bt, f(at, ht))

]}
(5)

In particular, we introduce a penalty function rbt to dis-
courage the learning controller from violating the constraint.
We define the penalty function rbt as follows

rb (Bt, f(at, ht)) =ρ(max[0, f(at, ht)−Bt])
+ σ(max[BM −Bt+1, 0])2 (6)

where the first term highly penalizes the system for rebuffer-
ing events, while the second one is an incentive for the sys-
tem to maintain the buffer level around BM , which is a
“safe” buffer level above which there is no penalty. The sec-
ond term further reduces the risk of rebuffering events by
penalizing actions that lead to risky low-buffer states. Fi-
nally, ρ and σ are relative weights given to the two buffer
management term to adjust the tradeoff between QoE and
rebuffering events.

In the next section, we formulate and solve the problem as
a MDP [14] optimization, where the evolution of the system
state is learned in real time.

5. ONLINE SOLVING METHOD
We consider the DASH client as a RL agent who learns

the best action (i.e., the best representation to download)
based on the experienced environment, which is character-
ized by the network status, the video complexity, and the
previous requests of the client. In particular, the state of
the environment is identified by a Markov state, for which
we optimize the best action.

As we explained in the previous section, we define the
state as st : {qt−1, ht−1, Dt, Bt}. The system is character-
ized by the quality of the previously downloaded segment,
qt−1, the estimated bandwidth experienced during the pre-
vious download, ht−1, the complexity of the segment that
needs to be downloaded, Dt, and Bt, which is the status of
the buffer at the instant when the decision is made.

Before going into the details of the MDP-based solving
method, we define the transitions to future states and the
reward associated to each action. When the client is in
the state st and takes action at, it transitions to a future
state st+1. Our process is Markovian since future states
st+1 : {qt, ht, Dt+1, Bt+1} depend only on the current state
st and action at. In particular, qt depends on the current
action at and on the video complexity level Dt, as defined
in Eq. (1). From Eq. (3), we see that the buffer level Bt+1

depends on the buffer status Bt (given in st), on the action
at, as well as on the channel ht (given in st+1). Finally,
the available bandwidth ht and the video complexity Dt are
the two only random variables of the system, and they are
mutually independent. Both variables are Markovian, as ex-
plained in section 4; we can then conclude that the overall
behavior of the system is Markovian.

Finally, we denote by r(st, at, st+1) the reward of taking
action at in st when st+1 is the next experienced state. From

st st+1s̃t

s0t

{qt�1, ht�1, Dt, Bt}

{q0t�1, ht�1, Dt, Bt}

{qt, ht�1, Dt, Bt} {qt, ht, Dt+1, Bt+1}

at

at

rq(st, at)

rq(s0t, at)

rb(s̃t, st+1)

Deterministic reward/transition

Stochastic reward/transition

Figure 2: Post decision states representation.

Eq. (2) and Eq. (6), we can define the action reward as

r(Dt, qt−1, Bt︸ ︷︷ ︸
st

, at, ht︸︷︷︸
st+1

) = rq(at, Dt, qt−1)− rb(Bt, f(at, ht))

= rq(st, at)− rb(st, at, st+1) (7)

where rq(at, st) is a deterministic function of the current
state and the chosen action, while rbt (Bt, f(at, ht)) is un-
known until the future state st+1 is revealed.

Equipped with the above notations, we can solve the opti-
mization problem in Eq. (5), introducing the optimal state-
value function V ?(st). The best state-value function V ?(st)
represents the value (in terms of long term reward) of the
state st under the best-action policy. More formally,

V ? (qt−1, ht−1, Dt, Bt)︸ ︷︷ ︸
st

= max
at∈A(st)

{
rq(at, Dt, qt−1)

+
∑

ht,Dt+1

p(ht|ht−1)p(Dt+1|Dt)[−rb (Bt, f(at, ht)))

+γV ? (qt, ht, Dt+1, Bt+1)︸ ︷︷ ︸
st+1

]
} (8)

where p(ht|ht−1) and p(Dt+1|Dt) are the one-step transition
probabilities of the processes that describe the channel rate
and the video complexity, respectively. As they are the only
random variables, the quality reward rq is a deterministic
function of the state and action. Using a more compressed
notation, Eq. (8) can be equivalently expressed as

V ?(st) = max
at∈A

rq(at, st) +
∑
st+1

p(st+1|st, at)

[
−rb(at, st, st+1) + γV ? (st+1)

]}
(9)

The optimization problem can be solved by backward in-
duction using Bellman’s optimality equations [15, 16], given
the channel and video complexity statistics, that need to
be learned online. For the client to quickly converge to the
optimal decision strategy, this online learning process needs
to be fast and accurate, and standard algorithms such as
vanilla Q-learning [15] converge too slowly. To reduce the
complexity of the learning agent, we introduce a new set of



states s̃t, which are called Post-Decision States (PDSs) [17].
The key concept is to use an intermediate state s̃t to divide
the transition from st to st+1 in two steps, as depicted in
Fig. 2. The transition from st to s̃t is deterministic and de-
pends on the current state and the action taken, while the
transition from s̃t to st+1 depends on the random variables
of the system and not on the action. In our case, the PDS s̃t
is defined by the quadruple {qt, ht−1, Dt, Bt}. After choos-
ing the action at, the value of qt is a deterministic function
of the complexity Dt. We refer to [18] for details on PDS
theory.

We can then define the value function of the PDS as

Ṽ ?(s̃t) =
∑
st+1

pu(st+1|s̃t)
[
−rb(st+1, s̃t) + γV ? (st+1)

]
(10)

where

V ?(st) = max
at∈A

{
rq(at, st) +

∑
s̃t

pk(s̃t|st, at)Ṽ ?(s̃t)

}
. (11)

In Eq. (10), pu(st+1|s̃t) is an unknown transition probabil-
ity that depends on the future channel state and video com-
plexity. At the same time, pk(s̃t|s̃t, at) in Eq. (11) is known.
It is a deterministic probability equal to 1 only for one al-
lowed transition st → s̃t. The optimal action at is the one
that solves solves Eq. (11) for the given PDS value function

Ṽ ?(s̃t).

The value of Ṽ ?(s̃t) can be evaluated by using Temporal-
Difference (TD) learning as described in [19]. In order to
learn the PDS value function, we update its value at every
step t according to the following update equation:

Ṽ t+1(s̃t)← (1− α)Ṽ t(s̃t) + α
[
−rb(st+1, s̃t) + γV t (st+1)

]
,

(12)

where α ∈ [0, 1] is the learning rate of the agent. The above
equation guarantees that, for appropriate values of the learn-
ing rate, the PDS state values converges to the optimal ones
as t goes to infinity.

In the following section, we show how the DASH client
selects the best next action given Eq. (12) and describe the
implementation of the online learning optimization frame-
work.

5.1 Implementation and pseudocode
In learning strategies, it is well known that the learning

agent needs to find the right trade-off between exploration
(learning the reward of new actions) and exploitation (se-
lecting the best action among the known ones) [15, 19]. In
our algorithm, we consider the common Softmax policy se-
lection strategy [19], in which the agent selects a given action
aj with a probability P (aj) that is a function of the state
value function; namely,

P (aj) =
e
Ut(aj)

τ

|As|∑
i=1

e
Ut(ai)
τ

(13)

where Ut(aj) is

Ut(aj) = rq(aj , st) +
∑
s̃t

pk(s̃t|st, aj)Ṽ t(s̃t). (14)

st+1s̃t

{⇠, ht�1, Dt,⇠} {⇠, ht, Dt+1,⇠}

{q00t , B00
t+1}

{q0t, B
0
t+1}

{q0t, B
0
t}

{q00t , B00
t }

Experienced transition

Virtual transition

Figure 3: Virtual and experienced transitions

Algorithm 5.1 Online algorithm

Initialize Ṽ = 1
γ

Initialize st to the starting state
repeat

for all aj ∈ A do
rqj ← qualityReward(st, aj)
s̃j ← findPDS(st, aj)

Ut(aj)← rqj + Ṽ (s̃j)

at ← softmax(Ut(·))
s̃t ← findPDS(st, at)
Observe st+1

vUpdate(Ṽ , s̃t, st+1)
st ← st+1

until end of simulation

The Softmax policy is used to choose the action to take in
in state st. However, the update of the PDS value func-
tion in Eq. (12) is performed using the optimal action that
maximizes Eq. (11). This is known as the off-policy learn-
ing method, in which the policy used to select the actions is
different from the policy used to evaluate the state values.
Off-policy learning algorithms are generally less conserva-
tive, and converge to the optimal action more quickly [15].

Finally, to speed up the convergence of the proposed con-
troller, in addition to the theoretical efforts in defining states
in the most compact way and introducing PDSs, we also im-
plemented a parallel update technique [17]. It allows us to
update multiple state value functions in parallel for each
experienced transition. In particular, the stochastic transi-
tion pu(st+1|s̃t) depends only on the channel ht and on the
complexity Dt. When a transition of these two quantities is
observed we can parallelize the state value update, for all the
PDSs that share the transition ht−1 → ht and Dt → Dt+1,
i.e., {q′t, ht−1, Dt, B

′
t} → {q′t, ht, Dt+1, B

′
t+1} for all q′t and

B′t.
In Algorithm 5.1 we provide the pseudocode for the pro-

posed online algorithm. In the first step, we initialize the
value of the PDS value function, setting all the state values
to the inverse of the exponential discount parameter γ, and
the initial state to the current state of the system. We then
repeat the following steps until the end of the simulation.

Given the state st, we first need to choose the action



Algorithm 5.2 parallel Ṽ update function

function vUpdate(Ṽ , s̃t, st+1)
Extract {ht−1, Dt} from s̃t
Extract {ht, Dt+1} from st+1

for all (q′, B′) do
s̃′t : {q′, ht−1, Dt, B

′}
s′t+1 : {q′, ht, Dt+1, B

′ + TP − f(g−1(q′, Dt), ht)}
rb′t ← bufferReward(s̃′t, s

′
t+1)

singleUpdate(Ṽ , s̃′t, s
′
t+1, r

b′
t )

Algorithm 5.3 single Ṽ update function

function singleUpdate(Ṽ , s̃t, st+1, r
b
t )

for all aj ∈ A do
rqj ← qualityReward(st+1, aj)
s̃j ← findPDS(st, aj)

r ← maxj [r
q
j + γṼ (s̃j)]− rbt

Ṽ (s̃t)← Ṽ (s̃t)(1− α) + αr

to take. We compute the quality reward for all possible
as defined in (2) by using the qualityReward function,
then find its associated PDS s̃t using the function find-
PDS, which computes the PDS for which pk(s̃t|st, at) = 1
to (st, a). Given these two values, we can compute the vari-
ables Ut(·) needed by the Softmax policy, implemented in
the softmax function, to select the action at. This set of
steps corresponds to Eq. (13) and Eq. (14).

After the action is selected, we find the real PDS s̃t and
observe the effects of the action, namely, the state st+1.
Finally, we can update the PDS value function Ṽ ; this oper-
ation is carried out by the functions Vupdate and single-
Update, whose pseudocode is reported in Algorithms 5.2
and 5.3 respectively.

The vUpdate function parallelizes the updates as de-
scribed above, using the real capacity and video complexity
to make inferences about other states with different buffer
and quality values. The fictitious state s′t+1 can be inferred
using the defined states s̃′t and the known transition of ht
and Dt. Note that the function g−1(q′, Dt) returns the ac-
tion at. This function represents the inverse of the function
g(·, Dt) when considering Dt fixed. The bufferReward
function corresponds to Eq. (6). Once the fictitious tran-
sition s̃′t → s′t+1 and the buffer reward rb′t are known, we
can execute the updates of the PDS value function using
the function singleUpdate. The singleUpdate function
corresponds to the PDS value update function defined in
Eq. (12): it updates the state value for the given PDS us-
ing the buffer component of the reward and the estimated
value of the next state st+1, assuming the optimal policy is
used. In order to update the PDS value function of state s̃t
we need to know the state value function of the state st+1.
Therefore, we need to solve Eq. (11) and select the action
with the largest long term reward. Here we can easily rec-
ognize that our algorithm is using an off-policy technique:
when we select the action to take we use the Softmax policy,
whereas when we update the PDS value function we use the
max policy.

6. RESULTS
To evaluate the system performance of the proposed al-

gorithm at the client side in a DASH-like scenario, we carry
out some Matlab simulations. In the following, we first de-
scribe the simulation settings and how we implemented our
simulator and the other considered benchmark controllers,
then provide simulation results under different DASH-like
scenarios and show the performance improvements that can
be achieved using our method with respect to a baseline con-
ventional solution and a state of the art RL-based DASH
controller [5].

6.1 Simulation settings
In this subsection, we first characterize the states, the

channel and the video complexity models in DASH-like sce-
narios. We then define the different parameters adopted by
our controller. Finally, we introduce the benchmark algo-
rithms that are used as comparison.

We express the quality function q = g(a,D) as a function
of the the Structural Similarity Index (SSIM) [20], which
has been chosen for its fidelity of the metric with the sub-
jective quality. Typical values of SSIM range from 0.8 to
1; SSIM values below 0.9 are usually considered poor bad
video quality levels [20].

As in [21], we approximate the SSIM curves to a fourth-
degree polynomial of the logarithm of the normalized rate
as follows

q = g(a,d) (15)

' 1 + d(1)ρa + d(2)ρ2a + d(3)ρ3a + d(4)ρ4a

where ρa = log(Ra/R1), with Ra being the encoding rate for
representation a and R1 being the maximum experienced
bitrate. The vector d is a synthetic representation of the
complexity of a video scene.

For a continuos domain of d, we could consider an infi-
nite number of SSIM curves, covering the full set of video
sequences that can be stored in the system. In practice, we
need to sample the video complexity to preserve a finite (and
limited) number of states in the MDP formulation. There-
fore, we extract a small set of reference curves which can
cover different behaviors of typical rate-quality curves. The
index of the reference curve is the complexity D we use in
our algorithm. The reference set was elaborated from the
EvalVid CIF video trace reference database1. Fig. 4 shows
all the curves of the dataset, emphasizing the 5 reference
curves that we select as representative of the whole dataset.
In the MDP formulation, the parameter Dt indicates the
best fit (among the 5 sample curves) for the complexity of
segment t.

The {q, h,B} values also need to be quantized. The state
border values are listed in Table 1. Finally, we define the
set of available bitrates (expressed in Mb/s) that represents
the set of possible actions as A : {0.3, 0.5, 1, 2, 3, 4, 6, 8, 10}.

1http://www2.tkn.tu-berlin.de/research/evalvid/cif.html

qt−1[SSIM ] 0.84 0.87 0.9 0.92 0.94 0.96 0.98 0.99 0.995
Bt[s] 3 4 5 6 8 10 12 15 18

ht−1[Mb/s] 0.5 1 2 3 4 5 6 8 10

Table 1: State thresholds.
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Figure 4: The rate-distortion curves for the videos
in the reference database.

The reward function parameters are defined in Table 2.
All the parameters have already been introduced in the pre-
vious sections, but we briefly recall their meaning below.
The parameter β, used in (2), establishes how much the
quality switches affect user QoE. We set β = 2 to get a
good tradeoff between the maximization of the average qual-
ity and the minimization of the quality switches. We need
the parameters ρ, σ, BM and Bmax to adjust the buffer
penalty in (6). We set Bmax = 20 s, since this is a com-
mon choice among DASH controllers. We then empirically
set BM = 12 s, ρ = 50, and σ = 0.001 to achieve a suffi-
ciently low probability of rebuffering events and yet allow
the learner to efficiently use the buffer in order to decrease
quality variations. Finally, the value of γ defines how greedy
the learner is. The lower the value of γ, the more the learner
tries to maximize the reward for the very next step, even at
the cost of penalizing the future ones. A value of 0.9 allows
the learner to achieve a good trade-off between the immedi-
ate and the future rewards.

The channel capacity follows a Markovian model as ex-
plained in the previous sections. Although the effects of
the interaction between TCP and the adaptation logic are
not considered in this capacity model, a statistical analy-
sis on the NYU DASH dataset (from the Crawdad2 trace
database) has shown that a Markov-Gauss process closely
fits the capacity fluctuations in a real DASH streaming ses-
sion, and modeling capacity variations as red noise [22] is
not unrealistic. Markov capacity models are widely used in
the literature, both on DASH adaptation [23][24] and TCP
performance [25] studies. We built a transition matrix for
all possible channel states ht and ht+1. The matrix we use
allows transitions to adjacent states with probability 2p

3
and

two-state jumps with probability p
3
. By varying the value

of p we can simulate more or less dynamic channels; in our
simulations, we used p = 0, p = 0.25 and p = 0.5.

In order to mimic a video’s changing complexity, we con-

2http://www.crawdad.org/nyupoly/video/20140509/

Parameter β ρ σ BM Bmax γ
Value 2 50 0.001 12 s 20 s 0.9

Table 2: Parameters used in our simulations.

Algorithm 6.1 Rate-based algorithm

if t = 1 then
a← amax

else
a← 1
while a ≥ ht and a < amax do

a← a+ 1

sider it to be composed of a series of scenes. Video complex-
ity is constant over a scene, but changes from one scene to
the next. Each new scene is selected randomly among the
reference ones using a uniform distribution. The duration of
the scenes follows an exponential random distribution (with
an average of 1, 5, or 10 segments); this model has been
experimentally validated by Rose [26].

In our simulations, we compare the proposed controller
with two benchmarks: a heuristic algorithm that greedily
optimizes the representation selection, and a learning strat-
egy that learns the best representation selection online. The
heuristic one is a rate-based controller that selects the bi-
trate of the segment to download based on the measured
channel bandwidth ht−1. Although they are still widely
used, methods based on rate-based heuristics represent only
one category among the currently adopted systems. How-
ever, most commercial adaptation logics, whether rate-based
or buffer-based, are greedy algorithms that do not consider
the channel and video complexity dynamics in a foresighted
manner. The rate-based controller is defined in Algorithm
6.1 (in which a ∈ {1, amax} is the chosen action, and actions
are ordered by bitrate). For the first segment, as the chan-
nel rate is unknown, the rate-based algorithm tries to build
up the buffer and speed up the loading time of the video by
choosing the lowest possible rate. Then, the following seg-
ment requests are adapted to the experienced bandwidth.

The other benchmark algorithm is FA(Q) [5], an algorithm
based on RL similar to our work but with a simpler structure
(in terms of state definition). The state definition in [5] is
simpler than the one we propose, as it only considers Bt and
ht−1, neglecting the previous quality level qt−1 or the video
complexity Dt. This reduces the overall system performance
(sub-optimality of the algorithm) but it speeds up the learn-
ing processing. In the following comparison, we show that
our algorithm converges as quickly as FA(Q) thanks to the
use of PDSs and parallel learning, while obtaining a better
QoE thanks to the more complete MDP model.

Both benchmark algorithms and the proposed one have
been simulated over the same scenario, characterized by one
DASH client downloading and playing the segments of one
video. In all the simulations we use the term “episode” to
define a stream of a video composed by 400 segments of 2
seconds each, i.e., the length of the video is 800 s per episode.

The performance of the algorithms is measured in terms
of SSIM; while the dynamic range of this quality metric goes
from -1 to 1, its mapping to actual QoE is non-linear. Val-
ues below 0.8 represent poor quality video sequences, and
acceptable SSIM values are in the range [0.8 − 1], where
even a small variation in terms of SSIM score, e.g. 0.01, can
have a large effect on QoE [27].

It is worth noting that, although the Matlab simulations
do not offer a complete realistic DASH streaming scenario,
they clearly show the benefits of the learning algorithm when
compared to a conventional algorithm in controlled condi-
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Figure 5: Reward experienced at the client side for
the first 2000 segments (i.e., 5 episodes) of a static
scenario, with constant channel (ht = 3 Mbps, ∀t) and
constant video complexity D = 4. Both the proposed
controller and the rate-based adaptation logic are
implemented.

tions, which is the main purpose of this section. Further-
more, their aim is also to show the ability of the proposed
algorithm to work in different conditions, static and dynamic
circumstances, and to show its fast adaptivity when condi-
tions change.

6.2 Simulation Results
As a first result, we analyze the convergence of the pro-

posed algorithm in a static scenario where both channel and
video complexity are constant over time. In particular, we
consider a constant bandwidth ht = 3 Mb/s,∀t, and a con-
stant value ofD (Dt = 4, ∀t; all episodes have the same refer-
ence curve). To show the convergence of the controller, we
provide the reward rt = r(Dt, qt−1, Bt, at, ht) experienced
for different segments. Results are provided for both the pro-
posed controller and the rate-based adaptation logic. Fig. 5
shows that the algorithm converges in less than 3 episodes
(i.e., 1200 segments). Note that the start of each episode is
clearly noticeable, as the reward has a downward spike every
400 segments, which is the episode duration. Since the first
segment of each video is downloaded with an empty buffer
and no information on the channel state, both the rate-based
algorithm and the proposed algorithm (labeled as “learner”)
take a conservative approach and choose low bitrates, caus-
ing the downward spike in the reward. Fig. 6 shows the
associated buffer behavior for each requested segment in the
same constant scenario for both the proposed algorithm and
the rate-based adaptation logic. The rate-based algorithm
never builds up the buffer, as it always chooses the rate that
matches the capacity exactly. The learner builds up the
buffer in the first few segments, avoiding the risk of dam-
aging rebuffering events, then it stabilizes. The rate-based
algorithm never triggers rebuffering events, and neither does
the learner after the first 200 segments.

We now consider a constant scenario with ht = 3.9Mbps, ∀t.
In this case, there is no action that matches the available bi-
trate exactly, since the closest video bitrates are 3 Mbps
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Figure 6: Buffer level Bt for the first 2000 segments
(i.e., 5 episodes) of a static scenario, with constant
channel (ht = 3 Mbps, ∀t), and constant video com-
plexity D = 4.

and 4 Mbps; the most convenient policy is to alternate be-
tween the two closest available rates by selecting the lower
one to build up the buffer, then switching to the higher one
and maintaining it until the buffer supports it. The chan-
nel capacity is high enough to make this strategy optimal,
since the switches are rare and the quality gain offsets the
switching penalties. Fig. 7 shows the reward for each down-
loaded segment for both the rate-based and the learning
controller. The learner can find the best trade-off between
average quality and switching penalties while avoiding re-
buffering events. On the contrary, the rate-based algorithm
pays for being greedy and selecting a conservative best ac-
tion. Fig. 8 shows the buffer status for the same episodes
depicted in Fig. 7. The buffer management of the proposed
RL algorithm maintains an acceptable level, avoiding the
risk of rebuffering events while trying to maximize user QoE.
The rate-based controller just fills the buffer blindly, without
exploiting the available bandwidth fully to increase QoE.

The convergence of the learner is slower in more complex
situations, but we found its speed to be similar to FA(Q)’s in
dynamic cases: both learning algorithms reach convergence
after a few hundred episodes at most, and none of the two
learning algorithms was significantly faster than the other
in any of the considered scenarios.

After giving the first intuitions on the controller behav-
ior in a static scenario, we now consider dynamic ones. In
the following simulations, we construct a channel transition
matrix with p = 0.25 and one with p = 0.5. We also con-
sider a dynamic video with an average scene duration of
5 segments; the proposed algorithm was compared to the
rate-based and the FA(Q) algorithms. To maintain focus on
the efficiency of the algorithm we provide results after 1000
training episodes in order to make sure that both learning
algorithms have learned the model correctly, rather than an-
other convergence scenario. We run 100 different episodes
and for each episode we select the best actions according to
the three algorithms, then evaluate the average SSIM and
the SSIM standard deviation. From this set of 100 values
we extract the minimum, the first quartile, the median, the
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Figure 7: Reward experienced at the client side for
one episode (after convergence) in a static scenario,
with constant channel (ht = 3.9 Mbps, ∀t) and con-
stant video complexity D = 4. Both the proposed
controller and the rate-based adaptation logic are
implemented.
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Figure 8: Buffer plot for one episode (after con-
vergence) in a static scenario, with constant chan-
nel (ht = 3.9 Mbps, ∀t) and constant video complexity
D = 4. Both the proposed controller and the rate-
based adaptation logic are implemented.

third quartile and the maximum sample.
The results are presented as boxplots [28]: each box con-

tains the values from the 25th to the 75th percentile; the
extreme outliers are indicated. The line inside the box indi-
cates the median, while the dot indicates the average value.
Fig. 9 and Fig. 10 show the SSIM mean and variation respec-
tively. The proposed algorithm has a higher average SSIM
in most episodes for both values of p; the overall average
SSIM for 100 episodes is 0.9786 for the proposed algorithm
and 0.9758 for the rate-based algorithm. The FA(Q) algo-
rithm has the worst performance in this scenario, with an
average SSIM of 0.9726; this is probably due to its excessive
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Figure 9: Average SSIM boxplot for 100 episodes
with an average scene of 5 segments and different
values of p
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Figure 10: SSIM standard deviation boxplot for 100
episodes with an average scene of 5 segments and
different values of p

prudence and unawareness of the video model. The results
for p = 0.25 confirm this behavior; it is interesting to note
that the results are not substantially different from the ones
we described above, although the channel is less dynamic.
This might be due to the fact that p = 0.25 still makes
the channel very unstable, and any benefit from stability is
insubstantial.

The proposed algorithm is also able to keep a steadier
quality throughout each episode, as Fig. 10 shows; the aver-
age standard deviation is 0.0313 for p = 0.5, while the rate-
based algorithm’s is 0.0419. The FA(Q) algorithm manages
to keep the quality steadier than the rate-based algorithm,
with an average standard deviation of 0.0391, this value is
however still higher than the value achieved by our con-
troller.

In order to show the adaptive behavior of the proposed
algorithm, we now consider another scenario, whose param-
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Figure 11: Adaptation: av. scene duration 5 seg-
ments, p goes from 0.5 to 0 after 10 episodes. Aver-
age SSIM

eters are constant in the first 10 episodes and then sharply
change. The video statistics stay the same, while the chan-
nel goes from extremely dynamic (p = 0.5) to completely
static (p = 0) after the 10th episode.

The simulations are averaged over 100 realizations to get
more accurate statistics. In addition to the rate-based algo-
rithm and the learner, we also show an “Offline” version of
the proposed algorithm; after getting the same number of
training episodes, the Offline Q-values are frozen and do not
adapt to changes in the environment. The Offline version is
meant to represent an offline learning algorithm like the one
proposed in [6].

Fig. 11 shows the average SSIM for each episode; the on-
line learning algorithm quickly adapts to the change after the
10th episode, increasing its advantage over the rate-based
algorithm, while the Offline version’s performance degrades
after the change in the environment. The FA(Q) algorithm
has serious difficulties in this scenario, since the controller
does not consider the video dynamics in the state definition.

Fig. 12 and Fig. 13 shows the average SSIM and the SSIM
standard deviation for another adaptation scenario; in this
case, the channel model is constant (with p = 0.5) through-
out the 20 episodes, while the video complexity model changes.
The first 10 episodes have a static video, while the last 10
have a very dynamic video with an average scene duration
of only 1 segment; the chosen value is purposely extreme
to emphasize the effect of the adaptation. As FA(Q) cannot
perceive the change in the video complexity, its performance
is not affected by the change, but its choices are sub-optimal
relative to the other two controllers.

Finally, we repeated the simulations for various transition
matrices with two common features:

• the matrices were symmetrical and only allowed one-
state transition (i.e., the channel could be described as
a random walk with symmetric probabilities)

• the steady-state distribution was gaussian with σ = 4
centred on different values of capacity.

These two rules were chosen as a way to have a realistic
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Figure 12: Adaptation: p = 0.5, from a static video
to av. scene duration 1 segment. Average SSIM
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Figure 13: Adaptation: p = 0.5, from a static video
to av. scene duration 1 segment. SSIM standard
deviation

channel model with the desired average capacity, without
changing the state definition and providing comparable re-
sults.

The simulations have been repeated for 100 episodes. The
results confirm that the proposed algorithm can achieve a
higher SSIM for any average bitrate (see Fig. 14), as well as
a lower standard deviation (Fig. 15).

The efficient buffer management allows to increase both
the absolute quality and the quality stability, while avoiding
annoying rebuffering events. The frequency of rebuffering
events in all simulations was never higher than 10−3, in par-
ticular it was never higher than the rebuffering frequency of
the rate-based algorithm. Considering that the rate-based
algorithm is very conservative, this result speaks for the va-
lidity of the learning approach. The FA(Q) algorithm proved
very efficient at avoiding rebuffering events, experiencing at
most one in every 10−4 segments, but proved to be inferior to
the proposed algorithm in terms of QoE: Fig. 14 and Fig. 15
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age available bitrate

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 2  3  4  5  6  7  8

S
S

IM
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

Capacity (Mb/s)

SSIM (standard deviation)

Rate-based
Learner

FA(Q)

Figure 15: SSIM standard deviation as a function of
the average available bitrate

show the performance degradation of FA(Q) for lower av-
erage capacity values, reaching performance results similar
to the one achieved by the rate-based algorithm. Its qual-
ity is approximately as steady as the proposed algorithm’s
for higher capacities, but the proposed algorithm maintains
a higher SSIM with its more aggressive buffer management
strategy.

7. CONCLUSIONS
In this work we propose and design a RL-based online

DASH controller. The objective of the controller is to max-
imize the QoE provided to the user aas a combination of
both vide quality and quality variations, with the latter be-
ing perceived as an annoyance by the user. At the same
time, the controller also tries to avoid rebuffering events,
which severely degrade the user’s experience. The problem
is formulated as an MDP where the optimal actions are the
ones maximizing the long-term reward. To learn the system
dynamics that define the long-term reward, we consider a
learning process. To speed up the learning process, we for-
mulate the learning algorithm using PDSs, which decrease

the amount of variables that need to be learned. Secondly,
we exploit the particular structure of our system to paral-
lelize the learning by using virtual transitions.

We implement our controller in Matlab and test it under
different scenarios, comparing its performance with other
baseline algorithms. The results of the simulations prove
that the proposed RL bitrate adaptation algorithm is ef-
fective in a variety of environments, and its performance is
satisfactory even in challenging scenarios. The proposed al-
gorithm performs better than the most advanced RL-based
example in the literature and a rate-based heuristic. The
algorithm converges fast enough to allow it to quickly react
to changes in the environment. This means that the system
can be deployed without a significant pre-training effort and,
more importantly, without any detailed prior knowledge of
the channel and video model.

As for future work, we aim at implementing the algorithm
in a more realistic scenario, using a real testbed or a packet
level simulation which uses a realistic TCP transmission.
Another interesting avenue of research is the interaction of
several learning systems that share a single network bottle-
neck: in this work, the system has been developed from the
perspective of a single client, but a network-wide approach
would be very useful.
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