
Measuring QoS in Web-Based Virtual Worlds -
an Evaluation of Unity 3D Web Builds

Hussein Bakri, Colin Allison
School of Computer Science, University of St Andrews

St Andrews, United Kingdom
{hb,ca}@st-andrews.ac.uk

ABSTRACT
Web Based Virtual Worlds (WBVW) provide users with
an immersive 3D experience through their regular browser.
They can be seen as prototypes for the 3D Web. This paper
uses key Quality of Service metrics to compare and present
measurements of two major formats for WBVW-Unity Web
Player and WebGL. Significantly, in terms of realizing the
3D Web, the former requires a plug-in whereas the latter is
now directly supported by major browsers. Metrics include
Frames per Second, Frame Time, CPU usage, GPU usage,
memory usage and Initial Download Time. The WBVW
used in these experiments is Timespan Longhouse, a virtual
world hosted originally in OpenSim and then transformed
into Unity 3D and WebGL. The ability to transform virtual
worlds built in OpenSim/Second Life to Unity 3D and then
to the web has great potential to bring 3D immersive inter-
action capabilities to all web users but our results show that
there is a significant performance difference between Web
Player (plug-in needed) and WebGL (no plug-in required),
in terms of all the metrics listed above. This paper ex-
plores the performance characteristics of the respective for-
mats and proposes possible optimizations to improve their
performance.

CCS Concepts
•Information systems → Internet communications tools;
•Computing methodologies → Virtual reality;

Keywords
Web-Based Virtual Worlds, Unity 3D, Unity Web Player,
WebGL, OpenSim, QoS

1. INTRODUCTION
The regular 2D web is gradually becoming more suit-

able for hosting immersive 3D content in the form of Web-
Based Virtual Worlds. This is achieved through the use
of Web3D technologies such as X3D[1], O3D[2], Oak3D[3],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMVE’16, May 12 2016, Klagenfurt, Austria
c© 2016 ACM. ISBN 978-1-4503-4358-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910659.2910660

Unity 3D and WebGL[4]. Web-Based Virtual Worlds (WB-
VWs) are similar to traditional Multi-User Virtual Environ-
ments (MUVEs) such as Second Life[5] and OpenSim [6] but
appear to be integrated into the standard web fabric from
the perspective of the user. All the user has to do is to fol-
low a standard web link to the WBVW and interact with the
immersive 3D environment from within their web browser.
Significantly in terms of growing the 3D Web, some formats
require a plug-in to be installed, which can dissuade poten-
tial users, whereas others consist of WebGL which is now
supported as standard in major browsers, and requires no
plug-in.

OpenSim is a leading MUVE platform. It started as an
open source copy of Second Life which was awkward to in-
stall and manage but has steadily improved and gained much
credence in the MUVE community due to its many advan-
tages over Second Life including programmability, scalabil-
ity, extensibility, configurability and manageability[7]. In
hyper-grid mode, it offers a prototype of how 3D Web im-
mersive enviroments might be connected.

Unity[8] is a leading 3D software suite for creating immer-
sive environments for games and WBVWs. It incorporates
a powerful physics engine (NVidia PhysX) and gives devel-
opers the ability to publish any Unity game or 3D world in
different formats for different platforms. It has the capabil-
ity to host a 3D world in a browser through its Web Player
plug-in or by generating WebGL.

This paper presents an initial investigation of WBVW
Quality of Service (QoS) metrics: Frames per Second (FPS),
Frame Time (FT), CPU, GPU, and physical memory usage,
and Initial Download Time (IDT) in WBVW projects cre-
ated in Unity 3D from OpenSim texture packets. FPS, FT
and IDT are all important for the user experience. Under-
standing the demands on the CPU, GPU and memory are
important as always with real-time 3D graphics.

IDT is important as existing 2D web pages aim to load
within a few seconds at most, lest a visitor loses interest and
goes elsewhere. Hence the proliferation of Page Load Time
monitoring and analysis tools for the 2D web as evidenced by
the built-in facilities in major browsers and web sites such as
www.webpagetest.org. In strong contrast, OpenSim based
virtual worlds IDTs can be relatively high, taking minutes
for complex or large MUVEs such as the reconstruction of
the St Andrews Cathedral[9, 10], an OpenSim mega-region.
FPS and FT are important in real time immersive environ-
ments. In an OpenSim viewer each frame should complete
in approximately 18.18ms (55 frames per second). "If total
frame time is greater than this then simulator performance

Figure 1: Timespan Longhouse

will be degraded"[11]. Similarly, in Unity3D web applica-
tions, 60 frames per second is recommended.

This paper presents the results and analysis of 3 experi-
ments on Timespan Longhouse (TL, see Fig. 1)[12], a vir-
tual world hosted originally in OpenSim and transformed
into Unity 3D. Two web builds of TL are tested: a Unity
Web Player (UWP) build and a Unity WebGL (U-WebGL)
build. For both UWP and U-WebGL the first experiment
measures the FPS and FT in the browser. The second exper-
iment measures the Physical Memory Used (MB), Physical
Memory load (%), Total CPU Usage (%), GPU core Load
(%), GPU D3D usage (%) and Total GPU Memory Usage
(%). The 3rd experiment measures the IDT of these worlds
during normal network conditions.

The main contributions of this paper are:

• We describe a methodology which can be used in a
client to obtain metrics for the quantitative assessment
of WBVW inside web browsers.
• We present quantitative empirical measurements for

different QoS metrics of 2 types of WBVW, those us-
ing the UWP plugin and those using U-WebGL, high-
lighting performance differences.
• This work discusses what could affect the QoS of WB-

VWs built in Unity and proposes possible optimiza-
tions to improve their performance.

This paper is organized as follows. Section 2 describes
the experimental setup, the client specification, measure-
ment tools and methodology. Section 3 presents the results
in terms of Graphics, CPU, GPU, memory and network.
These results are discussed in Section 4, along with possi-
ble optimizations. Importantly, section 5 highlights some
limitations of this initial investigation. Finally, Section 6
concludes and outlines future work.

2. METHODOLOGY AND TESTBED

2.1 Client machine specification
Specification of the client machine used for the 3 exper-

iments: Intel Core i5-440- 3.10 GHz with 16GB 1067 MHz
DDR3 RAM. The graphics card of the machine is NVIDIA
GeForce GTX 970 with 4GB of Video RAM. The client ran
on a fresh installation of Windows 7 Enterprise 64 Bit Op-
erating System with a minimal set of background processes
running to avoid interference. The worlds were generated
by Unity 3D engine version 5.2.0f3.

2.2 Measurement Tools
Experiment 1: Google Chrome version 44.0.2403.125

and Fraps were used to measures the FPS and FT. Fraps[13]
is a popular real-time video and game benchmarking tool.

Experiment 2: This uses HWiNFO64 and TechPowerUp
GPU-Z to measure: Physical Memory Used (MB), Phys-
ical Memory load (%), Total CPU Usage (%), GPU core
Load (%), GPU Memory Usage (%) and GPU D3D Mem-
ory usage (%). HWiNFO64[14] is a system information
utility tool that does in-depth hardware analysis, real time
monitoring and reporting. TechPowerUp GPU-Z[15] is a
lightweight system utility that provides real-time informa-
tion about video cards and graphics processors. Both tools
presented similar measurement values. As in Experiment 1
the client was Google Chrome v. 44.0.2403.125.

Experiment 3: This uses the built-in Network Monitor
tool[16] in Mozilla Firefox version 39, Network Inspector in
Opera 30[17] and the Network tool in Google Chrome[18] to
measure the Initial Download Time. Two Firefox add-ons
were also used to further check the results: app.telemetry
Page Speed Monitor version 15.2.5[19]; and Extended Sta-
tusbar 2.0.3.1-signed extension[20].

2.3 Experimental Methodology
Experiment 1: A PowerShell script manages the timing

of runs, opens the selected browser, and sets the specific link
of each 3D World to navigate. The script runs Fraps and
logs the data into CSV files. In this scenario pseudo-random
navigation moves the avatar from non-dense areas toward ar-
eas dense in 3D objects. The PowerShell script then closes
the browser. Fraps is configured to capture the FPS and
FT every second. Frame time numbers are recorded in the
CSVs as cumulative numbers. A simple repetitive subtrac-
tion equation is used to calculate the actual time of each
frame numbered sequentially.

Experiment 2: A PowerShell script regulates timings,
launches measurement applications (TechPowerUp GPU-Z
and HWinfo64), the browser and 3D worlds, logs measure-
ments into txt and CSV files and then closes after a prede-
termined time. Measurements were taken 10 times in each
mode or scenario (listed below). We found that 10 times
gave an acceptable variation for each mode. The modes are:

1: Baseline mode: Measurements of all CPU/GPU and
Physical Memory metrics were made in the Operating Sys-
tem (OS) immediately after a fresh installation. No an-
tivirus or other applications were running, no folder was
opened and an absolute minimum of services and background
processes were present. Each run’s duration was 2 minutes.
2: Baseline mode + the Browser: Measurements of

all CPU/GPU and Physical Memory metrics were done on
the OS + only a web browser opened (Chrome). Each run’s
duration was 2 minutes.

3: Baseline mode + Browser + a 3D world: All
measurements were taken for 2 minutes (Standing with Yaw-
ing) and 3 minutes Random Walking. Values were taken
every 2 secs. Compared with mode #2 this gives the actual
consumption in CPU/GPU and Physical memory of the 3D
world in question.

Experiment 3: Browser caches were cleaned completely
from inside the browsers themselves in addition to using
CCleaner[21] before every run. Measurements were taken
after everything was downloaded. The tools give the initial
download time + all the timings of each resource in detail.
The results from the range of tools used show that the mea-
surements are accurate and reliable.

2.4 Avatar Mobility
Two mobility models were used in experiments 1 and 2:

1. Standing: Avatar remains standing still with contin-
uous yawing for 2 minutes (Yaw is the change in avatar
orientation or the change in the "look at" view).

2. Random Walking: Avatar randomly walks for 3
minutes in different directions (from non-dense towards
dense areas) and with a constant speed.

2.5 Unity web-build sizes and complexity
This section describes the sizes and complexity of the

worlds measured. Unity generates the HTML file for UWP.
The default page is usually very simple. UWP is divided
into 3 components: the mono, the player and the plugin.
The plugin is either an ActiveX Control (OCX) in Inter-
net Explorer in Windows, or a NPAPI-style DLL for other
browsers like Chrome. On Mac OS it is a .plugin[22].

The WebGL capability of Unity is still being enhanced.
At time of writing, version 5.x does not support some fea-
tures including runtime generation of substance textures,
movie textures and runtime global illumination. In Unity
5.2, WebGL 2.0 is supported in experimental mode. U-
WebGL uses the emscripten compiler[23] to cross compile
the runtime code into asm.js JavaScript code. A Unity We-
bGL project consists of several files: an index.html that em-
beds the contents; several JavaScript files which contain the
code of the player and deals with its different functionali-
ties; a .mem file which contains a binary that allocates the
heap memory of the player and a .data file which contains
all scenes and assets data and normally constitutes the ma-
jority of the size of the 3D world[22]. Sizes of the two builds
of Timespan Longhouse are 40.1 MB for UWP and 353 MB
for U-WebGL. Both builds of Timespan Longhouse are the
defaults without any optimizations. The U-WebGL build is
considerably larger than the UWP build of the same world.
Table 1 shows the complexity of the virtual world in terms

Table 1: Rendering parameters of 2 minute random walk
Triangles Vertices Draw Calls
1,099,168 1,467,567 1,351

of the averages of the numbers of draw calls, and triangles
and vertices rendered.

3. RESULTS

3.1 Frame Rates and Frame Times
FPS is the average number of frames rendered in a second

while FT is the time taken to render a frame. These are key
QoS indicators of the performance of a virtual world system.
The boxplots in Figure 2 summarize the FPS distributions
of Timespan Longhouse virtual world for both UWP and U-
WebGL when the avatar is standing with random yaw and
is walking randomly from a non-dense to a dense area. It
can be seen that there are wide box-and-whisker diagrams
with highs of around 60 FPS which is very good performance
whether standing or walking and also very low FPS whiskers
reaching 0. FPS of around 60 characterizes non-dense areas
in TL whereas FPSs around 0 characterizes very complex re-
gions with complex geometry where the number of triangles
and vertices is high. It is interesting that the FPS median

Figure 2: FPS

(50th percentile, the thick whisker line) while walking stays
around 50 in the UWP version but less than 30 in the U-
WebGL version. Figure 3 and Figure 4 show that the FT

Figure 3: FT Distribution while avatar standing (ms)

Figure 4: FT Distribution while avatar walking (ms)

has many outliers above 2000ms which correlates with the
low values of FPS while walking and standing. Both ver-
sions reach FT values above 1000ms. The UWP version has
a more compact box and whisker diagram and nearer to the
high values of FPS than the U-WebGL version while both
standing and walking. Thus, it can be seen that the UWP
version outperforms U-WebGL in terms of FT and FPS.

3.2 CPU, GPU and Memory
Physical Memory Load (%) in the client machine and the

Physical Memory Used in MB were measured. Both give
the same information. Figures 5 and 6 show that no mat-

Figure 5: Physical Memory Load (%)

Figure 6: Physical Memory usage (%)

ter whether the avatar is walking or standing, the mem-
ory consumption does not change. However, the U-WebGL
version has a higher usage (11%) compared to UWP one
(4%). Figure 7 shows that U-WebGL consistently uses

Figure 7: CPU usage (%)

Figure 8: GPU Core Load (%)

more CPU whereas Figure 8 shows that GPU load usage of
the UWP build is greater than U-WebGL. The spikes in U-
WebGL occur when the avatar is walking. The U-WebGL
API uses hardware accelerated rendering on the GPU: on
Windows, DirectX is used for U-WebGL; on Linux and OS
X, OpenGL is used[22]. Figure 9 shows the GPU utiliza-

Figure 9: GPU D3D use (%)

tion via DirectX/Direct3D. This covers only the utilization
of the DirectX/Direct3D interface subsystem and does not
cover usage via other GPU interfaces. Figure 8 and 9 show
similar patterns because the major usage is on the Direct3D
interface of the GPU. Finally, Figure 10 shows the general
GPU Memory usage as a percentage (memory allocated from

Figure 10: GPU memory usage (%)

Total GPU Memory available in client machine). The U-
WebGL build consumes a little more, 1-1.5% GPU memory,
than a UWP build of the Timespan Longhouse.

3.3 Initial Download Time
In the same way that the Page Load Time is an impor-

tant measurement for the 2D Web, the IDT is important for
WBVW. Too long a time will result the user losing interest
and turning their attention elsewhere.

Table 2: Average RTT & Downlink bandwidths of actual
files on the Server, without rendering or processing

Average
RTT
to Server

Sizes of Raw Files
when downloaded

Average
downlink
bandwidth

0.271 ms
40 MB (UWP file) 11.2 MB/s
129MB (U-WebGL
.data file)

10.4 MB/s

The client and server were connected to different subnets
of a campus network, which has minimum link speeds of
100Mb/s. Table 2 summarizes the characteristics of the net-
work path when downloading files from server to client.

Table 3: Initial Download Times (ms) for TL Builds
Average Standard Deviation

UWP 3934.33 91.258
U-WebGL 20191.67 581.461

For the IDTs the caches were completely cleared prior to
each run. Table 3 shows that the U-WebGL version takes
over 20 seconds, whereas the UWP only takes around 4 sec-
onds - a significant difference.

4. RESULTS DISCUSSION
This section discusses some performance issues and possi-

ble optimizations. These are based on our experience from
conducting the experiments and also from the Unity docu-
mentation.

When comparing UWP and U-WebGL builds of the TL
world, we notice that the size of the U-WebGL is consid-
erably larger. FPS and FT vary in the same world quite
considerably. It is possible to achieve 60 FPS (a very good
performance in web browsers) in Unity worlds, as shown in
Figure 2. On the other hand, FPS can reach 0 in extremely
dense scenes with complex geometry in both U-WebGL and
UWP builds. The Fraps measurements were been confirmed
by values reported by Google Chrome and Firefox FPS me-
ters. For less than 16 FPS, worlds become noticeably slug-
gish and scenes begin to take longer to render. A user feels
that it takes a considerable amount of time to change the

orientation of her avatar in such low FPS scenes. At rates
less than 16 FPS, especially less than 9 FPS, the avatar be-
comes unresponsive to commands of the user and freezes for
several tens of seconds (shown by the very high frame times
seen in Figures 3 and 4 - above 1000ms).

There is typically a better frame rate in the UWP version
than the U-WebGL version. Walking can generate lower
FPS and higher FT than standing when the avatar encoun-
ters lower FPS parts of a world. Dynamic batching and other
optimizations explained in[24] can alleviate these frame rate
bottlenecks. The frame rates and thus the frame times cor-
relate with the complexity of the world, its composition and
its size. More complex worlds or even complex scene geome-
tries inside a world lead to lower FPS and higher FTs. Other
parameters such as lighting, shadows, and reflection mecha-
nisms are among many others that can influence those rates
as well as influencing GPU and CPU consumption. Walking
consumes almost the same amount of physical memory as
standing because the Unity 3D world takes a fixed reserve
share from the browser’s memory regardless of the activity,
regardless of whether the avatar navigates to a lower frame
rate part of the world.

We discovered from our experiments that the U-WebGL
version of the same world consumes more CPU, GPU mem-
ory and physical memory than the UWP version of the same
world. U-WebGL builds have performance bottlenecks in
physical memory consumption in their heap memory. U-
WebGL memory problems may lead to crashes in browsers
running out of memory when loading big U-WebGL projects.
Factors to consider include: is the browser a 32 or 64 bit pro-
cess; if the browser uses separate processes for each opened
tab; how the memory is shared between opened tabs; how
much memory is allocated for the JavaScript engine to parse
and optimize the U-WebGL code. U-WebGL builds can eas-
ily produce millions of lines of JavaScript thereby exceeding
the maximum amount of JavaScript normally budgeted for
browsers. The JavaScript engine has to use large data struc-
tures to parse the code leading to considerable consumption
of memory (sometime in Gigabytes). The emitted code of
JavaScript always needs to be kept in check. Sometimes
optimizations like changing the size of memory heap in U-
WebGL builds can help in alleviating memory failures[22].

Unity has many techniques for optimizing WebGL projects.
Features and techniques like "the optimization level" fea-
ture; the "striping level" feature (which strips any classes
or components not used during a build) and the "Exception
support" feature can all influence the performance and size
of the builds and thus their correct configurations contribute
to either fast or slow download times. Other modes tune
how much exceptions are required in U-WebGL code and on
which level and such modes increase/decrease the size of the
builds. Unity can also generate a compressed version of the
U-WebGL code using gzip for HTTP transfer[22].

Due to the fact that U-WebGL code has to be trans-
lated to asm.js, the behaviour of the JavaScript engine in
the browser is crucial to the performance of any U-WebGL
game. The browser has to have an optimized Ahead of Time
Compilation for the asm.js code. Unity advises the use of
Firefox as the best browser for this[22].

The Initial Download Time (IDT) of a U-WebGL world is
significantly longer than the UWP version, as can be seen in
Table 3. This time is being governed by 2 major file types.
In a UWP build, IDT is governed by the time it takes to

download the .unity3d file(s). On the other hand, in a U-
WebGL build, IDT is governed by the time it takes to down-
load the .data file(s) which are normally a lot bigger than
their counterpart .unity3d files. Both types of files (.unity3d
and .data) can be very big, especially from worlds devel-
oped in OpenSim. This can be very problematic with big
Web-Based Virtual Environments especially when fetched
on slow connections with high rate of packet loss and/or
delay. In other words, by default in UWP builds, the en-
tire 3D scene contained in the .unity3d file(s), is completely
sent to the client. All files should be received by the client
before the user can access or interact with the 3D environ-
ment. The progress bar seen by the user when loading a
Unity Web-Based world, actually shows mainly the progress
in transferring the .unity3d file(s) /.data file(s) and miscel-
laneous files and an additional time for browser processing.
A particularly important file in UWP builds is Object2.js,
which is responsible for detecting and communicating with
the plugin, for customising the appearance of the loading
screen and for embedding the Unity content.

The use of streaming mode[22] is advised in this case in-
stead of downloading the complete files in the beginning of
sessions. This allows the user to receive portions of the 3D
scene progressively. It is based on the philosophy of making
the user access the 3D world as soon as it is possible in-
stead of waiting for a complete download of the world. It is
important to think about users who access these 3D worlds
on slow connections. The world can be accessed even after
downloading 1 MB of data. The game or 3D world can be
divided into different levels. Due to the large size of Open-
Sim projects, transforming these worlds to Unity 3D worlds
can generate very large .unity3d or .data files. We advocate
always using streaming mode for builds of considerable sizes
that originated from Second Life/OpenSim and to divide the
scenes into different levels.

Being able to transform worlds already built in OpenSim
into Unity is potentially useful but to take advantage of the
web, a redesign of the 3D world is needed. Textures take
the majority of space. Textures in OpenSim/Second Life
may be larger in size and higher in resolution than what is
required for the web. Optimizing these textures for a web
setting is always needed[22].

Caching would help in making the 3D Worlds run and
execute faster becuase the .unity3d file can be stored in the
browser cache. Sometimes the default settings whether in
Unity builds themselves or on the server that hold Unity
worlds do not provide caching capabilities and thus every
time the worlds are fetched, all the files need to be sent the
client. This could be solved by changing the Unity code
itself (the caching class per example[25]) and by setting the
headers adequately (Cache-Control header) in a web server
directive especially for both .unity3d and .data files.

5. LIMITATIONS
Although this may be the first work to measure QoS met-

rics in Unity generated WBVW it is not a complete assess-
ment. For example, additional performance measurements
for more avatar mobility models and on different graph-
ics cards would give a more comprehensive view. In ad-
dition, potential optimizations of worlds in both UWP and
U-WebGL builds need to be explored. The worlds measured
were transformed from OpenSim to Unity, but were not op-
timized and hence not necessarily representative of other

types of WBVW. We chose not to use the Unity profiler
tool[26] which can generate metrics for CPU, GPU, physical
memory, rendering, physics, and audio. Why? Firstly, the
numbers that are displayed in the profiler (especially in the
memory category) are not the same as the numbers given
by operating system facilities such as Task Manager, Ac-
tivity Monitor and similar tools. This is probably because
some normal overhead is not taken into account by the pro-
filer[27]. Also, the memory usage in the editor is different
from that shown in the player. Secondly, the frame rates
of 3D games in the editor might be a lot higher than the
capped 60 frames per second rate in UWP on the majority
of web browsers; see the online Unity guide[22]. Finally, we
needed to measure QoS metrics from outside the Unity soft-
ware ecosystem to obtain a degree of objectivity, and to see
how these worlds performed in web browsers "in the wild".

6. CONCLUSION AND FUTURE WORK
In this work, we have made QoS measurements of Unity

Web Player and Unity WebGL builds of the Timespan Long-
house virtual world. Timespan Longhouse was originally
built in OpenSim and then transformed into Unity 3D. We
have described a methodology to obtain metrics including
FPS, FT, CPU, GPU, Physical & GPU memory usage, and
IDT. We have compared the QoS of both types of build and
have suggested optimizations and guidelines to improve per-
formance. The main conclusion is that the UWP build has
significant advantages in the majority of the QoS metrics
used. From a 3D Web perspective however, the need to in-
stall the UWP plug-in is not nearly as attractive as simply
visiting a virtual world as easily as any other web page.

Future work will consist of finer-grained analysis and mea-
surements of different optimizations and configurations for
the respective builds possible for use in standard browsers
and also incorporate other types of virtual worlds.

7. REFERENCES
[1] What is X3D. http://www.web3d.org/x3d/what-x3d.

Accessed: 2016-02-16.

[2] Peter Paulis. 3d webpages. Študentská vedecká
konferencia, FMFI UK, Bratislava, pages 316–327,
2010.

[3] Oak3D. http://www.effecthub.com/t/oak3d.
Accessed: 2016-02-16.

[4] WebGL - OpenGL ES 2.0 for the web.
https://www.khronos.org/webgl/. Accessed:
2016-02-16.

[5] Linden lab - second life. http://secondlife.com/.
Accessed: 2015-11-05.

[6] The Open Simulator project.
http://opensimulator.org/wiki/Main Page. Accessed:
2015-11-05.

[7] Colin Allison, Alan Miller, Thomas Sturgeon, Indika
Perera, and John McCaffrey. The third dimension in
open learning. In Frontiers in Education Conference
(FIE), 2011, pages T2E–1. IEEE, 2011.

[8] Unity3d game engine. http://unity3d.com/. Accessed:
2016-02-05.

[9] Sheldon Kennedy, Richard Fawcett, Alice Miller,
L Dow, R Sweetman, A Field, Arnett Campbell,
I Oliver, J McCaffery, and C Allison. Exploring canons
& cathedrals with open virtual worlds: The recreation

of st andrews cathedral, st andrews day, 1318. In
Digital Heritage International Congress
(DigitalHeritage), 2013, volume 2, pages 273–280.
IEEE, 2013.

[10] Colin Allison, Alan Miller, Iain Oliver, Rosa
Michaelson, and Thanassis Tiropanis. The web in
education. Computer Networks, 56(18):3811–3824,
2012.

[11] Opensim client side monitoring. http:
//opensimulator.org/wiki/Client side monitoring.
Accessed: 2016-02-05.

[12] J McCaffery, Alice Miller, Sheldon Kennedy, Tom
Dawson, C Allison, Anna Vermehren, C Lefley, and
K Strickland. Exploring heritage through time and
space supporting community reflection on the
highland clearances. In Digital Heritage International
Congress (DigitalHeritage), 2013, volume 1, pages
371–378. IEEE, 2013.

[13] Fraps web site. http://www.fraps.com/. Accessed:
2015-09-10.

[14] HWiNFO64. http://www.hwinfo.com/. Accessed:
2015-09-10.

[15] TechPowerUp GPU-Z.
http://www.techpowerup.com/gpuz/. Accessed:
2015-09-01.

[16] Firefox developper tools - network monitor.
https://developer.mozilla.org/en-US/docs/Tools/
Network Monitor. Accessed: 2015-09-20.

[17] Opera dragonfly documentation. http://www.opera.
com/dragonfly/documentation/network/. Accessed:
2015-09-20.

[18] Chrome - evaluating network performance. https:
//developer.chrome.com/devtools/docs/network.
Accessed: 2015-09-20.

[19] Firefox app.telemetry page speed monitor add-on.
https://addons.mozilla.org/en-US/firefox/addon/
apptelemetry/. Accessed: 2015-09-21.

[20] extended-statusbar firefox addon.
https://github.com/kustodian/extended-statusbar.
Accessed: 2015-09-21.

[21] CCleaner tool. https://www.piriform.com/ccleaner.
Accessed: 2016-02-16.

[22] Unity documentation.
http://docs.unity3d.com/Manual/index.html.
Accessed: 2015-09-01.

[23] Emscripten compiler.
http://kripken.github.io/emscripten-site/. Accessed:
2016-02-12.

[24] Unity documentation - optimizing graphics
performance. http://docs.unity3d.com/Manual/
OptimizingGraphicsPerformance.html. Accessed:
2015-10-20.

[25] Unity documentation - caching. http:
//docs.unity3d.com/ScriptReference/Caching.html.
Accessed: 2015-10-10.

[26] Unity profiler.
http://docs.unity3d.com/Manual/Profiler.html.
Accessed: 2015-10-01.

[27] Memory measurement - unity profiler tool. http:
//docs.unity3d.com/Manual/ProfilerMemory.html.
Accessed: 2015-10-01.

