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ABSTRACT
In this paper we present ongoing work on how to use Field-
Programmable Gate Arrays to increase the number of con-
current non player characters in large scale interactive vir-
tual worlds. We employ reinforcement learning combined
with artificial neural networks to allow the simulated char-
acters to learn from previous engagements with players. Our
simulations show achievable performance gains of several or-
ders of magnitude compared to a CPU-based solution.

CCS Concepts
•Computing methodologies→Multi-agent reinforce-
ment learning; •Hardware→Hardware accelerators;
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1. INTRODUCTION
A field programmable gate array (FPGA) is an integrated

circuit consisting of programmable logic blocks that can
be interconnected dynamically by a programmer. This es-
sentially allows the programmer to develop custom hard-
ware that is highly optimised for a specific application. The
FPGA can be reprogrammed with a new circuitry layout at
any time [1]. If the application changes, its custom made
hardware can be adapted accordingly. Additionally, FPGAs
offer instruction level parallelism, which allows the program-
mer to create highly parallel computation structures on a
very low hardware level. FPGAs can be used in a variety of
different areas, e.g. cryptography [2] or speech recognition
[3].

We are convinced that FPGAs have a huge potential for
Massively Multiuser Virtual Environments (MMVE) because
MMVEs contain a lot of parallel, situation-dependent tasks.
So far only a very limited amount of work has been done
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in that regard [4][5]. In this paper we present our current
work in this area. We use FPGAs to increase the number
of concurrent learning non player characters (NPCs) in an
MMVE. This is one example how FPGAs can help to over-
come current restrictions of MMVEs, namely the necessity
of spreading NPCs in the virtual world.

Our paper is structured as follows. First we discuss our
idea how FPGAs can be used to dynamically adapt servers
to different overload situations. Then we present how this
general idea can be applied to the artificial intelligence (AI)
engine. We show some preliminary performance measure-
ments and conclude with a short outlook on next steps.

2. FPGA-BASED MMVE SERVERS
To realise huge simulated virtual environments, MMVE

systems distribute the execution workload on many intercon-
nected servers. This approach works as long as the workload
is spread evenly in the virtual world. If the workload in a
small area gets too high, e.g. because of a battle involving
hundreds of players and NPCs, a single server is overloaded.
Further distribution of the workload is usually not possible
due to the necessary level of inter-server synchronisation.

FPGAs can help solving this issue. An FPGA can be
programmed to execute key MMVE functions in hardware,
i.e. with very high speed. Thus, a single server with an
FPGA can handle much more workload. At the same time
we can reprogram the FPGA at runtime. By analysing the
overload situation, we can determine its causes and then
deploy the most needed key function(s) on the FPGA. As an
example, if a server is overloaded because it has to simulate
too many NPCs, then parts of the AI engine can be moved
to the FPGA (see Figure 1). If many thousands of starships
are moving close-by in a space battle, parts of the physics
engine may be deployed on the FPGA in a similar fashion.

3. EXAMPLE: LEARNING NPCS
In our current work we focus on the AI engine of an

MMVE. To create the illusion of a living world, a typical
MMVE is populated by many non player characters (NPCs),
e.g. acting as citizens of a virtual city or soldiers in a virtual
army. The perceived intelligence of these NPCs can influence
the immersion and long term motivation of players. If NPCs
learn from previous encounters with players and adapt their
behaviour accordingly, then players have to come up with
new strategies and thus can replay the same scenario more
often. This reduces the pressure on MMVE providers to cre-
ate new content and thus reduces cost. However, suitable



Figure 1: Possible software architecture on hard-
ware with FPGA as accelerator containing an arti-
ficial neural network (ANN)

machine learning techniques, like reinforcement learning, are
computationally complex and are thus usually infeasible to
use for simulating large numbers of NPCs on typical server
hardware. Reinforcement learning (RL) [6] is based on the
idea that entities learn from their previous experiences. In a
given situation, an entity decides to perform an action and
receives a reward, based on the effect of this action in the
current situation. As an example, if an NPC decides to at-
tack a player and is killed, it receives a negative reward. It
learns that attacking in this situation is a bad decision and
will try to avoid this in the future. If the NPC is able to
sell an item with a profit, it will receive a positive reward,
indicating that this action is beneficiary.

To implement RL efficiently a feed-forward artificial neu-
ral network (ANN) [7] can be used to store past experiences
of NPCs. Such an ANN consists of connected neurons that
are grouped into layers. Each layer is only connected to the
layer before and after itself. No loops are permitted. This
type of ANN is easily parallelised, but on an x86-architecture
CPU we only receive a speed up in relation to the number
of processor cores. With an FPGA, the situation is entirely
different. Due to its instruction level parallelism, the FPGA
can calculate all neurons in one layer in parallel in a single
clock cycle. The calculation of a complete ANN takes the
clock speed times the number of layers. The number of neu-
rons per layer is irrelevant for the calculation speed. This
means that the size of a layer is not limiting the calculation
speed and is only limited by the physical area the FPGA
provided for design.

4. PRELIMINARY RESULTS
We are currently developing an implementation of such

ANNs for FPGAs. Our target hardware is a heterogeneous
processor server provided by the FiPS project [8]. To evalu-
ate the possible performance gains, we conducted first simu-
lations with the Xilinx Vivado Design Suite. In this sim-
ulation we compared an ANN implementation for Xilinx
Zynq XC7Z045 FPGAs with a reference Java implementa-
tion run on an Intel Core i7-4710MQ. As shown in Table
1, the FPGA-based implementation achieves a speed up of
a factor of 1000. However, in this scenario the FPGA size
was sufficient to fully parallelise all neurons per layer in the
ANN. Also, the results do not take into account possible
performance losses due to necessary synchronisations with

CPU time (s) FPGA time (s)

ANN 5x5 1.03 · 10−4 2.00 · 10−7

ANN 5x20 1.24 · 10−4 8.00 · 10−7

ANN 20x50 2.11 · 10−4 (2.00 · 10−6)

Table 1: Comparison of execution time of differ-
ent ANNs on an Intel Core i7-4710MQ and a Xilinx
Zynq XC7Z045 FPGA (simulated values) in seconds

other MMVE server components that are executed on the
x86-CPU.

5. CONCLUSION
Our results so far are promising. By deploying key parts

of the AI engine on an FPGA, we can speed up the compu-
tation of learning NPCs by several orders of magnitude. We
believe that this will make it feasible to use learning NPCs in
real MMVE systems and get beyond simple rule-based ap-
proaches. Clearly, this is work in progress and much more
research is needed. Our system implementation must be fin-
ished and evaluated on real FPGA hardware. We also need
to analyse interdependencies with other MMVE server com-
ponents and their impact on performance. In future work
we plan to extend our work to use multiple interconnected
FPGAs and to deploy other engine functions on them.
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