
Leveraging Transitions for the Upload of User-generated
Mobile Video

Stefan Wilk1, Roger Zimmermann2, Wolfgang Effelsberg1

1TU Darmstadt, Germany
2National University of Singapore, Singapore

{stefan.wilk, effelsberg}@cs.tu-darmstadt.de,
rogerz@comp.nus.edu.sg

ABSTRACT
A recent trend in user-generated content production is the
broadcasting of live video streams from mobile devices. A set
of upload protocols have been proposed supporting the live
transmission of user-generated video. Their performance de-
pends on the environmental conditions, e.g., the mobility
of users, the network conditions or the popularity of the
streams. Thus, we propose a novel mobile broadcasting
framework, which exchanges different uploading protocols
during the runtime of the application. Our goal is to use the
protocol performing best under given application require-
ments and environmental conditions. If the requirements
or the conditions change, the system dynamically assesses
whether the the protocol currently used is still the most ap-
propriate one for streaming. In case a superior protocol is
available, the system transitions to the new protocol. By
leveraging such transitions for video upload protocols, we
achieve a superior overall performance under changing net-
work conditions in comparison to a single upload protocol.

Keywords
DASH-U, User-generated Video, Mobile Phones, Upload

CCS Concepts
�Computer systems organization → Client-server ar-
chitectures;

1. INTRODUCTION
Today’s Mobile Video Broadcasting Services (MBS) have

in common that the media is usually streamed over unreli-
able, resource-capped networks, e.g., cellular networks (LTE
or UMTS). Usually, those networks can only offer a lim-
ited uplink transmission speed, which impacts the bitrate of
streamed videos from the mobile devices. In addition, the
mobility of users and changing network conditions require

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOVID’16, May 13 2016, Klagenfurt, Austria
© 2016 ACM. ISBN 978-1-4503-4357-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910018.2910658

a constant adaptation of the uploading scheme. Our as-
sumption is that no single uploading protocol exists, which
performs best under all network conditions and changing
application requirements.

Our proposed system leverages well-known as well as lat-
est research proposals for uploading video and allows to
seamlessly switch between the protocols. A switch between
protocols may be triggered, when network conditions and/or
application requirements change. Such a switch is called a
transition and allows to select the best scheme at any given
time. Enabling transitions has a major advantage in com-
parison to the design of a hybrid streaming solution: it al-
lows to integrate arbitrary new upload protocols in future.
Thus, a transition-enabled system can adapt to even un-
known environmental conditions without a complete rede-
velopment. The main contribution of this work is the design
of a transition-capable MBS. This MBS allows researchers
and engineers to retrieve the advantages (benefits) and dis-
advantages (costs) of using transitions in video upload appli-
cations. Furthermore, we introduce methods for decoupling
the upload protocol from the application and the lower lay-
ers.

2. BACKGROUND AND RELATED WORK
We now present a brief overview on the usage of an MBS.

Figure 1 shows the access patterns of users to the platforms
YouNow, Bambuser, uStream and Meerkat between the 26th
of June 2015 and the 2nd of July 2015. The MBSs show dif-
ferent popularity patterns. YouNow seems to attract most
viewers and recorders. Platforms such as Meerkat seem to
have the lowest success in attracting a high number of con-
current users. In general, we see that each platform has a
range of 40 to 2000 concurrent live streams.

The average quota of viewers per broadcaster is 11 for
YouNow, 33 for Meerkat, around 49 for uStream and 116 for
Bambuser. Usually, broadcasters only compete for viewers
with live streams and not with pre-recorded video clips. Our
data indicates that the reduced competition allows broad-
casters to more easily attract viewers for their live streams.
As Stohr et al. [13] show for YouNow a cumulative distri-
bution function on the popularity of videos is usually far
less skewed compared to a video sharing site like YouTube.
This finding is backed in other publications for live video
streaming platforms such as Vine [15], YouTube Live [5]
or Twitch [14]. In addition, Stohr et al. [13] investigate
the encoding parameters of video and show that the com-

http://dx.doi.org/10.1145/2910018.2910658

(a) Concurrent Broadcasters (b) Concurrent Viewers

Figure 1: Overview of available stream and viewer numbers on Bambuser, Meerkat, uStream and YouNow. (a) The y-axis
depicts the number of concurrent broadcasters. (b) The y-axis represents the number of concurrent viewers.

mon bitrates, frame rates and resolutions of video streams,
generated on mobile devices, are rather low. For encoding
YouNow uses the currently widely deployed video encoding
H.264/AVC. The findings of Stohr et al. indicate that en-
coding parameters are set based on the network interface
and device capabilities. In general, the bitrates are rather
low, reaching up to 1 Mbit/s and frame rates are below 15
frames per second.

Ito et al. [3] propose the Spatial and Temporal Omni-
Directional Video Distribution and Collective System (SOD-
iCS), which is able to collect video in a pull-based manner
from mobile devices. SODiCS is an exotic example for a
MBS which is designed for the break-down of the infras-
tructure in disaster cases. El Essaili et al. [2] investigate the
process of uploading video when the scheduling of an LTE
network can be controlled. They show a centralized optimal
decision for the uplink transmission when a client uploads
video in a quality-aware manner. In contrast to El Essaili,
our focus lies on the development of an efficient video up-
loading scheme in the application layer. Seo et al. [10] dis-
cuss how the MPEG DASH standard can be used for the
upload of media. For this purpose, they leverage the HTTP
POST method to continuously upload video segments. The
proposed system achieves transcoding and transmission of
a 480p video with a start-up delay of about the duration
of one segment under good WiFi conditions. Seo et al.’s
HTTP-based uploading protocol is similar to the streaming
protocol Meerkat uses. We use the implementation of Seo
et. al. as one uploading protocol candidate. The DAVVI
system [4] is designed to generate video segments and up-
load them immediately afterwards in order to generate a
low-delay video streaming experience. Johansen et al. re-
port on dynamically adapting the bitrate of a video during
the streaming session.

Recently, Richerzhagen et al. [7] propose a collaborative
uploading scheme for MBS. To ensure that video streams
are received in-time and at a high quality, mobile recorders
cooperate by sharing their upload capacities.

We propose to leverage transitions between uploading pro-

tocols in a MBS to cope with varying environmental condi-
tions and application needs. We understand a transition as a
complete replacement of a protocol during the runtime of an
application.We assume that a set of protocols exist, offering
similar functionality, e.g., the uploading of video streams,
but showing different performance characteristics under dif-
ferent environmental conditions.

3. SYSTEM DESIGN
To allow transitions between upload mechanisms on the

application layer without influencing the lower layers our
MBS needs to run in a decoupled way (see Figure 2). A me-
dia recording application on a mobile device accesses a me-
dia recorder API provided by the operating system to record
video from the device’s camera and microphone. The media
streams are stored in a recording buffer representing an ab-
straction of the transmission layer on which transitions can
take place. This transmission layer is decoupled both from
the recording application and the network. A transition-
capable runtime in the transmission layer allows to switch
between protocols during upload. The proposed MBS aims
at efficiently uploading live video streams to a central server.
We focus on leveraging existing research proposals on the ap-
plication layer for uploading protocols to show that the sys-
tem can be easily extended with new protocols. Protocols
investigated in this work are the Real-time Messaging Pro-
tocol (RTMP) [1], a modified version of Dynamic Adaptive
Streaming over HTTP (DASH) [12] allowing media upload,
Seo et al.’s HTTP POST-based DASH [10] and our custom
protocol for Live Video Upload (LiViU). These protocols are
explained in the following subsection.

Please note that the transitions are planned and executed
on the local device.

3.1 Video Upload Protocols
RTMP is a TCP-based and thus stateful media streaming

protocol, which assumes that the media content is pushed
from a source to its receivers. As an upload protocol RTMP
establishes a reliable and, ideally, low delay end-to-end con-

Abstraction to Upload Protocols

A
PP

Tr
an

sm
is

si
on

Media Recorder

Recording Buffer

PU
SH

DASH-U

RTMP

DASH-POST
LiViU

PU
LL

TCP UDP

Network

b) Adaptative /
reconfigurable
protocol

b)Transition between
uploading protocols

Figure 2: Overview on our transition-enabled MBS.

nection between a mobile device recording a digital video
and a server. A session is established using a three-way
handshake procedure, mainly consisting of the exchange of
authentication information. Thus, RTMP is capable to not
only transfer one media stream, but deliver multiple syn-
chronized audio and video tracks in parallel. The initialized
connection allows the transmission of variable-sized media
segments with a compact header structure. A drawback of
the initiating procedure is the rather long delay until a con-
nection is active. Especially, an MBS requires that the join
procedure does not delay the initial video segments to be
transferred. An advantage of the protocol is the message
structure, when a connection is established. Header over-
head is minimized as long as a connection is established.

Our second upload protocol is DASH-U. In recent years,
HTTP-based video streaming approaches gained significant
interest. The MPEG DASH [12] standard defines the net-
work communication using HTTP (TCP) as well as the de-
scription of the video in a manifest – the Media Presen-
tation Description (MPD). This description is required as
DASH supports adaptive video streaming, which allows to
dynamically select an appropriate bitrate for each network
connection. This pull-based video streaming scheme is used
for the design of DASH-U. Here, the video server regularly
requests video segments of a client. Each client transmits
segments of a video only if they are requested by the server.
Such a request/response communication pattern for a con-
tinuous stream is very costly in respect of the overhead of
the communication. On the other hand, the method is well
suited for scenarios, where the streaming server requires only
a few video segments from each client.

The DASH-POST protocol is our third upload proto-
col. It is similar to the one introduced by Seo et al. [10]. As
the name implies, communication in DASH is based on the
transmission of video segments via HTTP-POST requests.
Whereas in DASH-U the server requests individual segments
using HTTP GET requests, DASH-POST solely pushes the
video segments to the server. The overall delay until a seg-
ment is available on the streaming server should thus be
lower. An advantage of using HTTP instead of a dedicated
streaming protocol such as RTMP is that no session or state
has to be established before a new segment is transmitted.

We have also designed our custom hybrid upload proto-
col called Live Video Upload (LiViU). LiViU is based on an
quality-adaptive video streaming relying on the unreliable
UDP transport protocol. LiViU is designed for rapid con-
nection establishment and immediate streaming. LiViU dif-

fers from the other protocols by a more complex scheduling
component for distributing video segments. Whereas, the
push-based streaming transmits video to a server as soon
as a segment is available, the pull-based method requires
more sophisticated control operations, e.g., to allow a server
to retrieve the latest video segment before the next one is
sent. It is furthermore possible, that requests are made for
multiple video segments, e.g., for the upcoming five seconds
of video. LiViU can easily adapt between these scheduling
modes. In addition, LiViU requires a lightweight session
management in order to inform the network nodes, when a
mobile device joins or leaves the network. The advantage
of this approach is the comparably low overhead as well as
the reduced latency due to the usage of UDP. It is a hybrid
video uploading approach, which can reconfigure itself auto-
matically in order to push video segments or allow them to
be pulled by the server. This reconfiguration or adaptation
allows to handle some environmental changes, but not all.
In contrast, transitions allow the complete replacement of a
protocol by another one.

The implementation of the protocols does not include se-
curity features, e.g., for encrypted video streaming.

3.2 Upload Protocol Transitions
The rationale behind the transitioning between two up-

load protocols is to ensure a consistently high streaming
quality measured in the average uploaded video bitrate. The
possibly transmittable video bitrate can vary between the
protocols as the overhead of protocols is different, the un-
derlying transport protocols (TCP or UDP) work differently
well under given network conditions, and the scheduling type
(push/pull-based) influences the latency. The dynamic re-
placement of an upload protocol requires a runtime environ-
ment that supports transitions.

We build an abstraction of our transmission layer towards
the recording application and the lower layer network pro-
tocols, i.e., using TCP and UDP sockets. The recording
buffer is the interface to the recording application. This al-
lows a unified access for all uploading protocols to the video
data. The buffer works as follows: When a recorder appli-
cation generates a new video segment, e.g., by recording a
video frame and the associated audio samples, this segment
is transferred to the buffer, which informs the uploading pro-
tocol to transfer the segment. In most cases this segment
can be directly passed without being cached in the buffer.
Only when the uploading bandwidth is below the bitrate of
the recorded video data is cached in the recording buffer.
The buffer is then read sequentially in FIFO order. The
adaptive environment additionally offers the functionalities
for monitoring metrics that determine when to switch from
one upload protocol to another. The monitoring gathers
performance data on the current upload protocol.

We focus on the following metrics: a) the overhead of a
protocol, b) the goodput of the protocol, c) the initial time
until a stream is established and d) the current latency for
each recorded video segment.

The overhead (OH) of an upload protocol is calculated in
[bits] and is affected by the number and size of the control
messages of a protocol as well as headers of video messages.
The average overhead is used in our system which uses the
unit [bits

second
] as is calculated by: ŌH = OH

tsession

The goodput (GP) is measured in terms of the effective
throughput of video data in [bits

second
]. This excludes protocol

overhead or coordination messages by other system modules.
The join time (TJ) measures the time from the first

recorded video frame takes until it reaches the server. It
is measured in milliseconds. The rationale behind introduc-
ing the join time is that MBS users want to quickly share
their videos to an audience. The join time is the lower bound
for the delay of a video being recorded until it is accessible
by viewers. Note, that the transitions, which implies the
initialization of an upload protocol, are planned so that the
join time occurs only once in a streaming session.

Thus, besides the initial join time the different proto-
cols may cope differently with changing upload bandwidths.
This is addressed by the current latency (TL) which mea-
sures the latency between the timestamps of recording a
video segment on the mobile device and the timestamp at
the receiving server: TL = treceive − trecord.

The central idea of switching between uploading proto-
cols is to achieve a superior performance of the system by
optimizing of either overhead, the goodput of the upload pro-
tocol, join time or latency. Transition rules either minimize
the recording latency (min(TL)), the join time (min(TJ)),
the overhead of the protocol (min(OH)) or maximize the
goodput (max(GP)). The current implementation of our
framework optimizes – either minimizing or maximizing –
only one metric at a given point in time. During runtime
the application decides which metric shall be optimized (see
Section 4.1). In future work we plan to optimize a combi-
nation of these parameters, depending on the type of video
application.

A switch from one uploading protocol to another is
achieved by leveraging the recording buffer. It is made in-
stantly available to the new upload protocol by setting ac-
cording listeners. For the previous protocol, it seems that no
new video segment has been recorded and it can be turned
off. To determine when to switch from one protocol to an-
other, we regularly check, e.g., every tT = 5s which protocols
performs best for a given metric. After each check the cur-
rently best uploading protocol is chosen. Thus, a transition
may occur every tT seconds.

4. EVALUATION
Our evaluation is driven by assessing the potential of tran-

sitions between different video uploading protocols. The
research question is, if a higher overall efficiency can be
achieved by transitioning between different video upload
protocols in comparison to a single protocol.

The evaluation investigates this question based on a sim-
ulative evaluation with traces from the MBS YouNow. We
decided for a simulation setup to assess the system under
realistic conditions with hundreds of streaming users, which
is not possible in a real-world experiment. For evaluating
transitions in our uploading module and between the respec-
tive uploading protocols, we conducted simulative runs us-
ing the Simonstrator platform [6] and NS-3 communication
models [8]. We simulated the proposed MBS for 24 hours
on the basis of a real traces from the platforms YouNow
recorded on the 06/27/2015 (see Figure 1). The trace con-
sists of up to 1000 concurrent broadcasters, which we assign
to different regions with a simulated space of 200mx200m.
We assume that one region consists of up to 200 concurrent
recorders. Joining users are randomly assigned to a region.
The mobility of recorders is modeled according to movement
traces taken from the videos from the events ’NAF160312’,

Table 1: Parameters used in the simulative evaluation of the
MBS.

Parallel recorders: up to 1000 (trace-based)
Event space: 200m x 200m

Networks:
UMTS & LTE

based on ns-3 models
Latency: 100-300 ms
Bandwidth: LTE: 50 Mbit/s UL

Movement model:
JIKU Mobile Video DS [9]
NAF160312, NAF230312,

RAF100812

Video representation:
500, 750 and 1000 kbit/s

segment length: 1s

’NAF230312’ and ’RAF100812’. The videos are accessible
from the JIKU Mobile Video dataset [9]. For each video,
recorded by a single user, we have extracted the correspond-
ing movement model.

Table 1 shows the simulation setup. We assume that a
parallel transcoding of up to three video representations in
the bitrates 500, 750 and 1000 kbit/s is possible. We focus
on the mobile video broadcaster side and neglect to model
the video viewer side.

The minimum length of a video segment which can be
played independently is 1 second. This segment length
has also been used in the DASH-based video upload pro-
tocols [10].

All simulative experiments are repeated ten times with
varying simulation seeds for the used random number gen-
erator. Depicted figures, which include confidence intervals,
indicate a confidence of 95%.

4.1 Scenarios
We introduce a concurrent streaming scenario in which

all recorders stream their video according to the trace de-
scribed. In this case the upload capacity is scarce, all
recorders at the same event share the upload capacity.

In a second scenario, the MBS is evaluated using a video
composition use case in which different incoming video
streams are quality assessed and can then be composed in
a quality-aware manner. To simulate this scenario, we have
implemented the video composition approach by Shrestha
et al. [11] which regularly switches between video streams of
high quality. The application assumes that the video com-
position can be achieved in or near real-time.

In this scenario, we assume a composition based on the
principles defined by Shrestha et al. [11]: a video quality
which can vary over time for a single uploading device, and
despite lower qualities the resulting media stream should
be diverse. As a result, we imply a simplified composition
engine in which the server selects, from multiple incoming
streams, the highest quality (Qmax) video stream vt,Qmax

at time t. After tdiv seconds, the media stream is switched
to vt+tdiv,Qmax with the restriction that vt+tdiv,Qmax 6=
vt,Qmax . This implies that the video stream composed at a
time t, should not be selected again at a time t+ tdiv, where
tdiv is the time between two composition decisions. tdiv is
set to five seconds. If vt+tdiv,Qmax = vt,Qmax , the video
stream with the second highest video quality is selected. In
our simulation, the quality of the generated media streams
changes regularly (after tdiv) based on a randomly gener-

ated Mean Opinion Score (MOS) between 1 (lowest quality)
and 5 (highest quality). A composition service provider may
define different optimization goals depending on the quality
of the media streams. We have implemented three opti-
mization goals: (1) uploading nodes which generate a high
quality video stream (MOS ≥ 3.5) optimize towards a high
goodput, (2) mid-quality videos (MOS ≥ 2) are uploaded in
order to minimize the overhead and (3) low quality videos
(MOS < 2) are not transmitted at all.

4.2 Results: Concurrent Upload Scenario
As mentioned, we assess the potential flexibility in the

upload protocols in terms of setting the adaptation goal to-
wards minimizing the join time, latency, overhead traffic or
maximizing the goodput. The protocols perform very dif-
ferent in respect of each metric. This illustrates that de-
pending on the application requirements, different protocols
perform differently well (see Figure 3). For a single opti-
mization goal the best performing protocol can be deter-
mined, but no single protocols exists which performs best
under all conditions. In respect of the initial join time the
RTMP streaming and DASH-U protocols, due to their multi-
step join procedure, are the slowest protocols. RTMP uses a
three-way handshake which requires multiple messages to be
transmitted until the first video segment is sent. DASH-U
requires the creation and delivery of a manifest file (MPD)
to the server and the selection of an appropriate bitrate un-
til the streaming begins. The quickest joining procedure
is achieved by DASH-P, as it immediately starts uploading
video using HTTP POST requests; it does not negotiate
the streaming session. Interestingly, this is even faster than
the LiViU joining procedure, even though the HTTP under-
lying TCP should require significantly more time in com-
parison to LiViU’s UDP sockets. Regarding the protocol
overhead, both HTTP-based approaches create by far the
highest overhead. The request/response pattern of DASH-
U is very verbose, thus, it wastes data traffic and performs
worst in respect of the generated overhead. Once a session
is established RTMP and LiViU are the most efficient pro-
tocols.

Under challenged network conditions, the average good-
put of the protocols is essential. DASH-based approaches
are less efficient due to the HTTP overhead including its
verbose headers.

DASH-U seems to be inflexible and non-beneficial for any
metric. Thus, in this scenario the adaptive case – illustrated
in Figure 3 – did not select this protocol. We will elaborate a
bit more on why this protocol is still beneficial in Section 4.3.

We can define optimization goals in respect of specific met-
rics such as latency or join time. We define a strategy that
starts with (1) a low join delay when the streaming begins.
In the next step, when a reliable streaming session is estab-
lished, (2) the MBS aims for a high goodput in unchallenged
conditions. In situations, when the bitrate of the stream
needs to be decreased as the upload speed falls below the
video bitrate (3) the system tries to minimize the overhead
and adapts to (2) when enough bandwidth is available again.
When two upload protocols achieve a similar goodput (4) the
system optimizes towards the latency. This scenario is de-
picted in Figure 3. The different protocols behave differently
depending on the goals.

Our adaptive approach achieves comparable performance
to the best single protocol. In comparison to RTMP tran-

0
Join Time Latency

200

400

600

800

1000

1200

T
im
e
[m
s]

RTMP

DASH-U

DASH-P

LiViU

Adaptive

0.0
Goodput Overhead

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed
P
er
fo
rm
an
ce
[0
,1
]

Figure 3: Benefit and costs of our adaptation of uploading
protocol environment. In the left part the achieved join time
and delay is depicted whereas in the right part the normal-
ized goodput and the normalized overhead of the protocols
are shown.

sitions between different upload protocols generates 3.1%
more overhead. In comparison to the superior protocol for
a low join time (DASH-P), our adaptive approach saves
approximately 9.47% of overhead. The overhead of our
transition-capable uploading scheme is rather low in rela-
tion to the average video bitrate. 0.89% of the average traf-
fic represent protocol overhead. Similarly, the adaptation
to a goodput optimizing protocol is slightly worse than the
best protocol.

One observation in this scenario, where transitions are
mainly induced by an internal switch to a new optimization
goal, is that the per-node transition frequency is rather low
with in average around 0.017 adaptations (equals one adap-
tation every 58 seconds). The transition itself takes some
time. The faster our system can adapt, the better. The
average adaptation time is related to the new protocol after
the transition and it mainly consists of the join time. Thus,
whereas a switch to a DASH-P is possible with a negligible
delay, the remaining upload protocols need up to 1.1 seconds
to establish a streaming state.

4.3 Results: Video Composition Scenario
Besides upload capacity, another reason for transitioning

between protocol could result from the streaming provider’s
interest in prioritizing the media streams differently. A com-
mon use case is the video composition (see Section 4.1) in
which only one outgoing media stream is composed from
different incoming media streams at an event.

A first observation in this scenario is, that a protocol such
as DASH-U can be very helpful. Using DASH-U, the com-
position server can easily select the video stream segments
from the devices in a very flexible manner. Whereas, for
the first scenario push-based protocols should be preferred
in respect of all metrics, the second scenario demonstrates
that pulling video (DASH-U) can be beneficial. It offers a
significantly improved flexibility as the composition server
can easily switch between video streams without the coor-
dination overhead needed for push-based upload protocols.

During this evaluation the average transition rate in-
creased to 0.167, meaning that every 5.92 seconds an adap-
tation was executed. In the majority of cases a transition
was invoked by a composition decision. The protocol over-

0
RTMP DASH-U DASH-P LiViU Adaptive Compos.

100

200

300

400

500

600

700

800
A
vg
.B
itr
at
e
[k
bi
t/s
]

Figure 4: Comparison of the achieved average bitrates of
the different uploading protocols including the adaptive ap-
proach and the video composition application.

head, due to the reporting of quality values as well as the
assignment of composition decisions, increased slightly to
1.24%. The average quality increases of the video streams
was around a bitrate of 757.5 kbit/s, significantly higher
than the average quality in the non-adaptive scenario with
584 kbit/s and the single protocols (see Figure 4). The
composition case using transitions outperforms the usage
of a single upload protocol.This is achieved as low-quality
recordings were never requested at all by the server.

5. CONCLUSIONS
This work has introduced an improved MBS, which aims

at efficiently delivering video from a mobile devices, such
as smartphones, to central video streaming servers. We
improve existing live upload services (MBS) by leveraging
at runtime transitions between mobile upload protocols at
runtime. The transition-enabled MBS helps to compensate
for varying network conditions by replacing upload proto-
cols with different performance characteristics. We have de-
veloped a transition-enabled uploading protocol layer with
protocols from related work such as RTMP, DASH-U and
DASH-POST and our own custom protocol LiViU. Yet, in
many cases the integration of upload protocols into one stack
may not be desired by the designers. Thus, our investigation
shows the individual strengths and weaknesses of the upload
protocols and allows system designers to develop new hybrid
solutions. We show that for different metrics, the uploading
protocols perform differently. By using transitions between
the protocols, an MBS can ensure to use always the best
approach for given application requirements and network
conditions.

In future work, we plan to investigate the concept of
transitions for MBS in more detail by introducing new ap-
plications and additional upload protocols. Furthermore,
we want to complement our simulative evaluation by a
prototypical test. And we plan to investigate new ap-
proaches to optimally configure the four upload metrics in
an application-dependent way.

Acknowledgements
This work has been co-funded by the German Research
Foundation (DFG) as part of the projects C03 within the
Collaborative Research Center (CRC) 1053 – MAKI as well
as by the project LiViU funded by the German Federal Min-
istry of Education and Research with grant no. 01IS12054.

6. REFERENCES
[1] Adobe Inc. Real-Time Messaging Protocol (RTMP)

1.0. Technical report, 2009.

[2] A. El Essaili, Z. Wang, E. Steinbach, and L. Zhou.
QoE-Based Cross-Layer Optimization for Uplink
Video Transmission. ACM Transactions on
Multimedia Computing, Communications, and
Applications, 12(1):1–22, 2015.

[3] K. Ito, G. Hirakawa, and Y. Shibata. Omnidirectional
Video and Sensor Data Collection and Distribution
System on Challenged Communication Environment.
In IEEE Int. Conference on Advanced Information
Networking and Applications, 2014.

[4] D. Johansen, T. Johansen, T. Aarflot, J. Hurley,
A. Kvalnes, C. Gurrin, S. Zav, B. Olstad, E. Aaberg,
T. Endestab, H. Riiser, C. Griwodz, and P. Halvorsen.
DAVVI: a Prototype for the Next Generation
Multimedia Entertainment Platform. In ACM Int.
Conference on Multimedia, 2009.

[5] K. Pires and G. Simon. YouTube live and Twitch. In
ACM Multimedia Systems Conference, 2015.

[6] B. Richerzhagen, D. Stingl, J. Rückert, and
R. Steinmetz. Simonstrator: Simulation and
Prototyping Platform for Distributed Mobile
Applications. In EAI Int. Conference on Simulation
Tools and Techniques, 2015.

[7] B. Richerzhagen, J. Wulfheide, H. Koeppl, A. Mauthe,
K. Nahrstedt, and R. Steinmetz. Enabling
Crowdsourced Live Event Coverage with Adaptive
Collaborative Upload Strategies. In IEEE Int.
Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2016.

[8] G. Riley and T. Henderson. The NS-3 Network
Simulator. In Springer Modeling and Tools for
Network Simulation, 2010.

[9] M. Saini, S. Venkatagiri, W. Ooi, and M. Chan. The
Jiku Mobile Video Dataset. In ACM Multimedia
Systems Conference, 2013.

[10] B. Seo, W. Cui, and R. Zimmermann. An
Experimental Study of Video Uploading from Mobile
Devices with HTTP Streaming. In ACM Multimedia
Systems Conference, 2012.

[11] P. Shrestha, P. de With, H. Weda, M. Barbieri, and
E. Aarts. Automatic Mashup Generation from
Multiple-camera Concert Recordings. In Int.
Conference on Multimedia, 2010.

[12] T. Stockhammer. Dynamic Adaptive Streaming over
HTTP: Standards and Design Principles. In ACM
Conference on Multimedia Systems, 2011.

[13] D. Stohr, T. Li, S. Wilk, S. S., and W. Effelsberg. An
Analysis of the YouNow Live Streaming Platform. In
IEEE Workshop on Network Measurements, 2015.

[14] C. Zhang and J. Liu. On Crowdsourced Interactive
Live Streaming. In ACM Workshop on Network and
Operating Systems Support for Digital Audio and
Video, 2015.

[15] L. Zhang, F. Wang, and J. Liu. Understand Instant
Video Clip Sharing on Mobile Platforms. In ACM
Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2014.

	Introduction
	Background and Related Work
	System Design
	Video Upload Protocols
	Upload Protocol Transitions

	Evaluation
	Scenarios
	Results: Concurrent Upload Scenario
	Results: Video Composition Scenario

	Conclusions
	References

