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ABSTRACT
Crowdsourced Live Streaming (CLS), most notably
Twitch.tv, has seen explosive growth in its popularity in
the past few years. In such systems, any user can lively
broadcast video content of interest to others, e.g., from a
game player to many online viewers. To fulfill the demands
from both massive and heterogeneous broadcasters and
viewers, expensive server clusters have been deployed to
provide video ingesting and transcoding services. Despite
the existence of highly popular channels, a significant
portion of the channels is indeed unpopular. Yet as our
measurement shows, these broadcasters are consuming
considerable system resources; in particular, 25% (resp.
30%) of bandwidth (resp. computation) resources are used
by the broadcasters who do not have any viewers at all.
In this paper, we closely examine the challenge of handling
unpopular live-broadcasting channels in CLS systems and
present a comprehensive solution for service partitioning on
hybrid cloud. The trace-driven evaluation shows that our
hybrid cloud-assisted design can smartly assign ingesting
and transcoding tasks to the elastic cloud virtual machines,
providing flexible system deployment cost-effectively.

CCS Concepts
•Information systems → Multimedia streaming;

Keywords
Crowdsourced Live Streaming, Hybrid Cloud, Workload
Migration, Twitch.tv

1. INTRODUCTION
Crowdsourced live streaming (CLS) has emerged as

powerful, real-time means of video broadcasting over the
Internet. Such commercial systems as Twitch.tv1 (or Twitch

1www.twitch.tv, owned by Amazon.com in September, 2014.
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for short) and YouTube Gaming2 enable a new form of user-
generated live streaming service, attracting an increasing
number of viewers all over the globe. Using CLS-based
eSports broadcasting as an example, it is known that
the number of eSports gaming audiences has trebled to
89 million in the past three years [4]. The time spent
watching eSports broadcasting has increased to 3.7 billion
hours in 2014. To fulfill the elevating user demands,
CLS service providers are aggressively expending their data
center infrastructures. For example, Twitch has already
deployed 25 service zones, hosting their dedicated streaming
datacenters across five continents.

In this paper, we find that a significant fraction of these
expensive data center resources is however consumed by the
broadcasters who have very few or even no viewers. In
particular, over 25% (resp. 30%) of the server bandwidth
(resp. computation) resources are used to host broadcasters
who do not have any viewers at all, not to mention other
unpopular broadcasters who only have 1 or 2 viewers.
To better examine these unpopular broadcasters in CLS
system. We closely monitored 1.5 million broadcasters and
9 million streaming channels within a month. Different from
the unpopular channel problem in traditional streaming
systems [7], we find that the unpopular broadcasters
are not only in greater numbers but also harder to
manage in CLS systems. In particular, their online
behavior is highly dynamic with short online duration
but frequently arrival pattern. These highly dynamic
broadcasters (video sources) are not yet considered in the
optimization of existing streaming systems. Moreover,
CLS highlights the event-related live streams with different
broadcasters. One representative scenario is that multiple
players (i.e., broadcasters) broadcast their game sessions
from specific perspectives or languages. In each CLS event,
streaming contents have an event-based correlation, but
show broadcaster-based differences. All these make the
workload optimization of CLS quite challenging.

Given the dynamic online pattern of these unpopular
broadcasters, an intuitive and cost-efficient solution is
to migrate their video ingesting and transcoding services
to elastic cloud platforms. Our previous EC2-based
measurement [14] also indicates that public cloud can
provide comparable transcoding and communication latency
if we can smartly assign cloud virtual machines (VMs) to
the broadcasters. Based on this observation, we present
the design of a hybrid cloud-assisted CLS framework
(HyCLS) enhancing the utilization of existing dedicated

2gaming.youtube.com



datacenters. We first propose the stable index (SI) to
estimate the stability of broadcasters who already have
historical activities. We further design effective algorithms
to offload workload of new broadcasters. The evaluation
shows that our proposed solutions can migrate up to 59.9%
of the workload from dedicated datacenter to public cloud
and cost-effectively reduce about 20% of lease cost in hybrid
cloud-assisted design.

2. BACKGROUND

Live Streams

Interactions

Broadcaster Viewers

Figure 1: A generic diagram of CLS systems.

The idea of service crowdsourcing has attracted a sub-
stantial amount of attentions from both industry and
academia [12, 8]. This service model refers to the
process of getting contributions from a crowd of people
(crowdsourcers) [8]. In multimedia-related crowdsourcing
studies, various researchers proposed different frameworks
to evaluate and improve users’ Quality-of-Experience (QoE)
for images and videos processing [2, 9].
Figure 1 briefly depicts a generic system diagram of

crowdsourced live streaming platforms with streaming and
interactive pipelines that jointly serve geo-distributed broad-
casters and viewers. All sources are managed by amateur
broadcasters (i.e., crowdsourcers) and driven by massive
viewers/broadcasters in real-time using live messages (e.g.,
TwitchPlaysPokemon). Use Twitch as a case study, our
previous work has illustrated the basic architecture of CLS
platform [15]. Several recent studies already focused on
crowdsourced live streaming services [6, 1]. Different
from the existing studies, our work examines the online
behavior of the crowdsourcers and explores the effective
utilization of resources. Our work differs from these
recent studies in the following aspects: first, we target
on crowdsourced live streaming systems which represent
lots of unique features. For example, geo-distributed
broadcasters determine the service quality from the “first-
mile” of live streaming distribution. The scalability of
streams in this process basically determines the viewers’
QoE. Second, any improvement and optimization must
carefully design the strategy to generate low-latency live
streaming. Therefore, we propose an optimal solution
that cost-effectively schedules the broadcasters’ workloads
to public clouds in the crowdsourced live content generation.

3. MEASUREMENT OF CROWDSOURCED
LIVE STREAMING: TWITCH AS A
CASE STUDY

In our measurements, we try to answer the following
fundamental questions: how many unpopular broadcasters
exist in real crowdsourced live streaming systems? And,
what is the underlying impacts of them? As such, we
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Figure 2: Characteristics of crowdsourced live events.

deeply measure the workloads and corresponding resource
consumption based on the crawled dataset from Twitch.

Our investigation is based on crawled data, which are
continually collected from Twitch every five minutes in a
one-month period (Feb.1st-28th, 2015). Through the Twitch
APIs 3, our multi-thread crawler obtained information from
each broadcaster and whole system dashboard. We retrieved
broadcaster datasets and stream datasets through polishing
aforementioned data. A brief explanation is as follows:

• in broadcaster datasets: each trace collects the total
number of views and other statistics such as playback
bitrate, resolution, and partner status, for a total of
1.5 million broadcasters (2% outliers are eliminated).

• in stream datasets: each trace records the number
of viewers every five minutes and other properties
including start time, duration, game name, etc., for a
total of 9 million streams (0.3% outliers are removed).

Effects of Crowdsourced Live Events: CLS highlights
the event-related live streams with different broadcasters.
One representative scenario is that multiple players (i.e.,
broadcasters) broadcast their game sessions from specific
perspectives or languages. In each CLS event, stream-
ing contents have an event-based correlation, but show
broadcaster-based differences. To illustrate this distinct
feature, we explore the crowdsourced live events based on
the broadcaster’s channel name and game type in each
trace of stream datasets. Figure 2a plots the number of
crowdsourced events during one month 4. We observe that
crowdsourced live events exist in all data traces. Although
the highest number is twelve, these live events attract up
to 52% of total views in our measurement, as shown in
Figure 2b. This distinct feature will be considered in the
problem formulation (Section 5).

Popularity of Crowdsourced Streaming Channels: We then
focus on the distribution of broadcaster’s popularity, which
has played a key role in previous studies for multimedia
systems, and is also critical to answer our first question.
We plot the highest number of concurrent views against
the rank of the broadcasters (in terms of the popularity)
in log-log scale in Figure 3. From this figure, we observe
that the popularity of those broadcasters exhibits perfect
Zipf’s pattern5. We further find that there exists such a
high skewness that the top-3% popular broadcasters account
for about 80% of the peak requests. Another interesting
result shows that 90% of broadcasters only attract less than
8 viewers (labeled on the small figure in Figure 3 ) even

3http://dev.twitch.tv/
4Due to space limitation, only four date labels are displayed.
5We use the coefficient of determination, denoted R2, to
illustrate how well our measured data fit the Zipf’s law.



Figure 3: Broadcasters rank
ordered by popularity.

FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

0.5

1

1.5

2

2.5
x 10

4

# 
of

 v
ie

w
er

s

 

 

Broadcaster A

(a) Popular broadcaster A

FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

0.5

1

1.5

2

2.5

3

# 
of

 v
ie

w
er

s

 

 

Broadcaster B

(b) Unpopular broadcaster B

Figure 4: Two samples of broadcasters.
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Figure 6: Broadcaster arrivals per five minutes.
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Figure 7: The effectiveness of resource consumption.

at their peak time in our one-month broadcaster datasets.
Based on these findings, if the highest number of concurrent
views number of a broadcaster is less than 8, we assume
that s/he is not a popular broadcaster. How long are
these broadcasters’ live streams? Is there any difference
between popular and unpopular broadcasters in terms of
live duration? We next investigate the characteristics of
broadcasters’ streams based on stream datasets.
Dynamics of Crowdsourced Live Broadcasters: If the

concurrent number of views in one stream is less than 8, the
popularity of this stream is quite low. To further investigate
the characteristics of them, we compare the distribution of
their duration with popular streams in Figure 5. This figure
shows that the durations of 80% of unpopular streams are
less than 83 minutes, implying the workloads of them are
highly dynamic. Because the number of unpopular streams
is quite large (about 8.13 million), massive unpopular
streams could occupy the datacenter resources frequently
and dynamically. We also calculate the total duration of all
unpopular streams in one month to be nearly 830 years,
while the total duration of popular streams is only 310
years. Therefore, a huge amount of resources cannot be
utilized effectively. To illustrate the different characteristics
of two types of broadcasters, we plot their activities during
ten days in Figure 4a and 4b. Figure 4a shows that
broadcaster A has a regular live schedule with the stable live
duration, attracting a large number of viewers. While the
broadcaster B in Figure 4b not only has irregular schedules,
but also consumes dedicated resources during the dynamic
live duration. We also plot The Probability Distribution
Function (PDF) of the broadcaster arrival rate every five
minutes in Figure 6. This figure shows that the arrivals
of popular broadcasters are clearly lower than 300, while
the unpopular broadcaster’s arrival rate has a considerable
range from 400 to 1800. Due to the frequent arrivals
and huge resource consumptions, it is necessary to enhance
current CLS systems with optimizing the dynamic workloads
of these unpopular broadcasters.
Challenge of Hosting Unpopular Broadcasters: To evalu-

ate the underlying challenges of these unpopular broadcast-
ers, we use the playback bitrate and resolution of each live
stream to estimate the consumptions of bandwidth and com-
putation resources based on the measurement works in [1].
Figure 7 shows the proportion of bandwidth/computation
consumption of two types of broadcasters when they stream
live content to ingest servers on Feb 14th/15th, 2015.
The broadcasters who do not have any viewers consume
about 25% (resp. 28%) of bandwidth (resp. computation)
resources. At the meantime, about 33% (resp. 31%) of
bandwidth (resp. computation) resources are consumed
by the broadcasters who only have less than 8 concurrent
viewers. This figure also shows that these broadcasters only
attract less than 5% concurrent viewers, which means that
CLS service providers have to carry out a large number
of ingest servers to allocate these unpopular broadcasters
dedicated bandwidth/computation resources continually.

4. HYCLS ARCHITECTURE
Based on our Twitch measurement, we have demonstrated

that the characteristics of broadcasters/streams and illus-
trated that the dedicated resources are not to be consumed
effectively. Our previous EC2-based measurements also
illustrate public cloud can support crowdsourced live stream-
ing effectively [14]. As such, we present the architecture
of our hybrid cloud-assisted crowdsourced live streaming
system HyCLS in this section.

In CLS system, broadcasters constantly utilize the stream-
ing pipeline, considering the latency-intensive features, any
service interruption will generate a series of degradation of
viewer’s QoE. Therefore, the main challenge of our design is
to optimize the broadcast latency. Besides, crowdsourced
live events, wherein several broadcasters simultaneously
start live-broadcast, have a more stringent requirement
on the disparity of broadcast latencies between various
broadcasters. To address these problems, our design
focuses on stream pipeline and optimizes the following three
steps: (1) Initial Offloading, for the broadcasters who have
historical information about live streams, the system makes



an offloading decision between public cloud and dedicated
datacenter when they start to connect ingest servers.
(2) Ingesting Redirection, according to the broadcasters’
performs, the system assigns one alternative ingest area and
redirect her/his source streaming; (3) Transcoding Schedule,
each offloading also consider the transcoding capacities of
various service areas in HTTP Live Streaming scenario.
In fact, step 2 and 3 have to be designed together, the
reason is that once the workload of a broadcaster is offloaded
to a certain ingest area, transcoding workload has to be
processed in the same area.
We introduce our design as shown in Figure 8, which

represents the main components in the HyCLS system. For
example, according to the historical information, Initial
Offloading strategy first assigns broadcaster A and B to
the second dedicated datacenter and the second public
cloud area, respectively. After several time slots, Ingesting
Redirection and Transcoding schedule modules migrate
them to a proper service area based on our strategies. Next,
we propose the design of offloading decision and optimize
the Ingest Redirection and Transcoding Schedule together
in Section 5. In our hybrid framework, the first challenge

A

B

Figure 8: The design of HyCLS.
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is how to select proper ingest server to broadcasters at the
beginning of live-broadcast. Therefore, we have to estimate
the stability of each broadcaster based on her/his historical
activities. For one broadcaster b who has activities in recent
n days (n ≥ 2), we first divide the ith day to m equal time
slots, each time slot j has a value di,j that indicates whether
b have a live streaming in current time slot. In fact, SI(b)

reflects the similarity of b’s resource consumption in recent
n days.

SI(b) =

 1
n

∑n
i=2

∑m
j=1 d

(b)
i,j ·d

(b)
i−1,j∑m

j=1 d
(b)
i−1,j

if
∑m

j=1 d
(b)
i−1,j ̸= 0

0 otherwise

(1)

Given the stable index SI(b) of a broadcaster b, a
straightforward way to give the offloading decision is to set
a threshold H: if SI(b) ≥ H, b will be assigned to the
ingest servers in dedicated datacenters, otherwise, public
cloud ingests the live streaming of b. Using a firm threshold,
however, suffers from the following drawback: during
lower workload stage, leasing public clouds to specifically
ingest unpopular workloads is not a cost-effective strategy,
because the existing resources in dedicated datacenters can
completely process every broadcaster’s live stream. We solve
this problem by detecting the existing broadcasters’ SI in
one dedicated datacenter and update the value of H to
the average SI of all broadcasters per unit time. Followed
by the growth of broadcasters, more and more regular
broadcasters will be ingested into dedicated datacenters, and
other dynamic broadcasters are offloaded to public clouds
at the beginning of live-broadcast. We further evaluate the
effectiveness of the stable index.

5. PROBLEM FORMULATION AND SO-
LUTION

Due to the dynamic and unpredictable features of
broadcasters in CLS system, we design the ingesting and
transcoding strategies based on the current workloads sta-
tus. The workloads can be migrated among different service
areas in real-time. Consider the critical features including
crowdsourced live events and latency synchronization, we
take broadcast latency as our objective and propose a formal
description of our optimization problem in the current
crowdsourced scenario.

5.1 Problem Formulation
To make the problem easy to discuss, we quantize time

into discrete time slots, which may be a few minutes to
several hours (e.g., five minutes in our experiment). We

use B(t) to denote the set of broadcasters and E(t) to
denote the set of crowdsourced live events in time slot t.
(∀i = 1, 2, · · · ,m, ∀j = 1, 2, · · · ,m, ei ∈ E(t), |ei| ≥ 1,

ei ∩i ̸=j ej = ∅, and ∪ei = B(t)). We define R as the set of
ingest areas where a broadcaster can be connected to upload

live content and define set W
(t)
r as the bandwidth demand

of ingesting area r. We assume that the instance in public
cloud are homogeneous and let W denote the bandwidth
capacity of each instance. Therefore, we do not consider
the optimization inside each service area, a large number
of works have focused on this area and acquire a better
optimization [10].

We consider the impacts of ingesting stage and transcod-
ing workload with various versions on different ingest areas.

As such, b’s broadcast latency L
(t)

(b,r,v) is calculated as:

L
(t)

(b,r,v) = l
(t)

(b,r) + l
(t)

(qb,qv)
+ l(r,v) (2)

where v is the transcoding version, v ∈ V , l
(t)

(b,r) is the link

latency between b and r, l
(t)
r is the ingest latency that is

determined by the instance type in r, qb and qv are bitrates
of source (i.e., broadcaster b) and transcoding version v

(v ∈ V, V = 0,Z+), respectively. l
(t)

(qb,qv)
is the transcoding

latency, which can be measured in advance. l(r,v) is the
latency between ingest area r to a class of viewers v, which
will be defined in next section.

We now define utility function U (t)(b, r, v) as:

U (t)(b, r) =
∑

v∈V G(t)(b, r, v) ·N (t)

(b,v) (3)

where N
(t)

(b,v) is the number of viewers who watch b’s v

version streaming in this time slot. This value is initially
determined by b’s historical distribution of different versions.
G(t)(b, r, v) means the gain when b select r as the ingest and
transcode area and is calculated as follows:

G(t)(b, r, v) = α+ ln(1− βL
(t)

(b,r,v))

= α+ ln(1− β(l
(t)

(b,r) + l
(t)

(qb,qv)
+ l

(t)

(r,v)))
(4)

where l
(t)

(qb,qv)
denotes the transcoding latency. If qb ≤ qv,

l
(t)

(qb,qv)
= l

(t)

(qb,qb)
, which depends on the current computing

capacity of area r and is monotonously increasing on both
qb and qv [13].

Based on previous definitions, our objective is :

Maximize
e∈E(t)

F (A(t)) = min b∈e
r∈R

{U (t)(b, r)} (5)



subject to: Resource Availability Constraints:

∀r ∈ R,W
(t)
r ≤ Wr (6)

∀r ∈ R,C
(t)
r ≤ Cr (7)

Budget Constraints:∑
r∈R

W
(t)
r
W · Costw(r) · I(r) ≤ Kw (8)

∑
r∈R

C
(t)
r
C · Costc(r) · I(r) ≤ Kc (9)

where Wr is the bandwidth capacity of ingest area r.
Costw(r) is the bandwidth price in area ri. The bandwidth
constraint (6) asks that at any given time, the bandwidth

demands have to be satisfied. C
(t)
r is the computing demand

of area r, C denotes the amount of per unit computing
resource. Costc(r) is the price of instance in r in terms
of computing capacity. The computing constraint (7)
guarantees that at any given time t, the computation
resource consumption of each transcoding task can be
satisfied. The budget constraints (8) and (9) guarantees
that the bandwidth/computation cost is lower than the
budget Kc/Kw, which we assume can at least serve all
offloading workloads.

5.2 Solution
Current formulated objective (5) has four con-

straints (6) (7) (8), and (9). It is hard to solve
this optimization problem efficiently in a short time.
Fortunately, the bandwidth cost and computation cost are
not independent due to the pricing criteria of the instance
on a public cloud. Previous studies on EC2 instances
already reveal that the bandwidth capacity is more than
700Mbps on m3.large instance [5]. As such, based on our
measurement results in [14], generating low-latency live
streams will consume a vast of computation resources. If we
relax constraints (6) and (8), another constraints still work
for optimizing objective (5). Assuming that the capacities
of the different public cloud service area are given, our
assignment problem can therefore be transformed into a
0-1 Multiple Knapsack problem, which is known to be NP-
hard [3]. Although the optimal solution can be reached
through meticulously searching all possible assignments,
this is unpractical in real CLS system. Inspired by our
previous work [11], we thus propose a heuristic algorithm,
which consists of scaling decrease and resource assignment,
as shown in Algorithm 1. In the scaling decrease step (line
1 to 10), we eliminate the redundant assignment solutions
based on the optimization target. The line 2 search the
maximum value from the set of a minimum utility of each
assignment (b, r, v) in crowdsourced live events. The line 4
to 10 then remove all useless assignment and guarantee
the rest of assignment can be effectively used in the next
algorithm. We next use resource assignment (line 11 to 22)
to implement an effective solution. The main idea is to
utilize the utility in live streaming broadcast latency by a
unit of computation resources.

6. PERFORMANCE EVALUATION
We now evaluate the performance of our solution via

trace-based simulation, which captures the broadcasters’
streaming pattern, including resolution, partner status, and
concurrent viewers, etc., in Twitch dataset. We consider

Algorithm 1 WorkloadAssignment()

1: for each crowdsourced live event e ∈ E do
2: U(t)

e ← maxr∈R{minb∈e{U(t)(b, r)}} ;
3: end for
4: for each crowdsourced live event e ∈ E do
5: for each assignment (b, r) ∈ A(t)(b, r) do

6: if U(t)(b, r) < U(t)
e and IsPath(b, r) == true then

7: A(t)
∗ ← A(t) − (b, r); //Remove this assignment path

8: end if
9: end for
10: end for
11: Sort (b, r) by descendant order of U(t)(b, r)/Costc(r);

12: for each assignment (b, r) ∈ A(t)
∗ do

13: rsorted ← Sorted available area r of b by descendant order of

U(t)(b, r);
14: for each r ∈ rsorted do
15: if C(t)

r − c(b) ≥ 0 then

16: A(t)
∗ ← A(t)

∗ − (b, ·); //Remove all assignment of b

17: C(t)
r ← C(t)

r + c(b); //c(b) is the computation
consumption of transcoding workloads b

18: A(t)
∗ ← A(t)

∗ + (b, r);
19: end if
20: end for
21: end for
22: return A(t)

∗

two broadcaster’s types: partner, whose live streaming
can be adaptively transcoded, and common broadcasters,
whose viewers only can watch the source quality HTTP Live
Streaming. At the meantime, we make a few simplifications
in the simulation based on realistic settings: first, to
simplify the complexity of algorithm, we consider that the
EC2 instances are homogeneous (m3.large) and latency
l(r,v) is fixed for a certain quality level of HTTP Live
Streaming; second, due to the confidential nature of official
implementation, we cannot acquire the details of dedicated
datacenter, we show the comparisons of extra outlay when
workloads are offloaded into public cloud. The price data
of instances come from Amazon. The following settings are
the default parameters in the simulation: to normalized the
impacts of broadcast latency, we set α = 1 and β = 0.011,
which makes the gainG(t)(·) ∈ [0, 1], if the broadcast latency

L
(t)

(·) ∈ [0, 57], which embraces a general broadcast latency

interval [10, 40] in Twitch [15]. The algorithms are launched
per five minutes, which also is the time slot of crawling data.

We first conduct simulations to study the impacts of
stable index SI and threshold H. We set n = 2 to
calculate the broadcaster’s stable index in advance and set
the initial threshold H = 0. To illustrate the efficiency of
this threshold, we use it to classify the new broadcasters
without any other strategies. We assume that the offloading
starts when the bandwidth consumption is up to 60% of the
dedicated datacenter. Figure 9 illustrates the evolution of H
and its impacts for the public cloud during three days (Feb
3rd-5th, 2015). From this figure, we observe that the value
of H increase dramatically at the beginning of that day, and
then it stables between 0.5 and 0.7. At the peak traffic
time (from 9:00AM to 13:00PM), a vast of broadcasters
arrive streaming system; therefore, the value of H occurs
a small decrease. However, the limitation of H induces that
public cloud only hosts a few number (maximum 6.5%) of
broadcasters. Thus, threshold H plays a beneficial role in
the offloading process, but it still cannot reduce the impacts
of dynamic broadcasters sufficiently.

With the previous parameter setting of H, we then
conduct simulations to investigate how HyCLS performs
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Figure 10: The performance of proposed solutions.

with the real data traces. Figure 10a compares the lease
cost of three workload provisioning approaches: views-
based (LB-V), computation-based (LB-C), and HyCLS-
based approaches in three days. LB-V only considers the
current number of views in different live streams, while
LB-C migrates workload based on the consumption of
computation resources.. For ease of comparison, the lease
cost in each day is normalized by the corresponding cost
of the LB-C approach. Our HyCLS-based approach has
the lowest cost, decreasing 16.9%-19.5% of LB-C approach
and 17.8%-20.4% of LB-V approach. Another observation is
that the lease cost of Feb03 is higher than those of another
two days in all approaches. This is because there has the
highest number of broadcasters on Feb03. We also plot
the normalized lease expenses and the average percentage
of migration during our whole datasets in Figure 10b, we
can observe that the daily decreasing cost performs the
weekly pattern and provide elastic workload provisioning
cost-effectively. Moreover, more than 30% of broadcasters
are migrated to the public cloud in every day. We further
explore the highest percentage of migration and find that
up to 59.9% of broadcasters will be assigned to public
cloud on several time slots. Our simulation results show
that compared with spending massive outlays to manage
and upgrade dedicated datacenters, leasing flexible public
cloud is a cost-effective solution in terms of decreasing the
influences of dynamic unpopular broadcasters and providing
highly available live streaming services.

7. CONCLUSION AND FUTURE WORK
This paper presented HyCLS, a generic framework that

facilitates migrating crowdsourced live streaming between
dedicated datacenters and public clouds. We strived to
offer the comprehensive understandings on the practical
crowdsourced live streaming system and explore the po-
tential enhancement. We first measured Twitch-based
datasets to investigate the challenges therein. We observed
that unpopular broadcasters consume the massive valuable
dedicated resources continually. We then proposed a hybrid
design for the initial offloading, as well as dynamic ingesting
redirection and transcoding assignment that accommodates
unpredictable workloads and realizes the adaptive offloading
in demand. Extensive simulations driven by traces from
Twitch and settings from Amazon EC2 demonstrated the
cost-effectiveness and superior migration of HyCLS. We
are currently examining the performance of our hybrid
cloud design on the PlanetLab. We are also interesting
in developing a better initial offloading strategy, as well as

incorporating other factors into stable index and threshold
evolution, e.g., broadcaster’s social characteristics.
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