
Efficient Coordination of Web Services in Large-scale
Multimedia Systems

Mohammed Shatnawi
Microsoft, Redmond, WA, and

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
Qatar Computing Research Institute

Hamad Bin Khalifa University
Doha, Qatar

ABSTRACT
Interactive multimedia communication services, such as Skype, are
complex and composed of software components typically imple-
mented as web services. Efficient coordination of web services
is challenging and expensive, due to the statelessness nature of
web services, and because web services change over time. The
existing protocols implementing web service transactions are inef-
ficient. They waste resources due to their inability to selectively
add/remove individual web services in transactions without incur-
ring high overhead that affects the quality of multimedia sessions.
We propose a simple and effective optimization to current web ser-
vice transaction management protocols that allows individual web
services toselectively participate in distributed transactions they
contribute to. We implement the proposed approach in one of the
largest multimedia communication services in the world, and find
that it enhances the throughput of multimedia service distributed
transactions by 36%, reduces failure rate by 35%, improves multi-
media quality (Mean Opinion Score (MOS)) of succeeded transac-
tions by 9%, and reduces the overall time required by all transac-
tions by 35%.

CCS Concepts
•Information systems→ Information systems applications; Mul-
timedia information systems; Multimedia streaming;

Keywords
Online multimedia communications; distributed transactions; qual-
ity of service;

1. INTRODUCTION
Large-scale multimedia communications services such as Skype

and Google Hangout, online eLearning like Coursera, and content
distribution and streaming like Amazon CloudFront and YouTube
are complex and composed of many software components running
on different platforms. For example, an interactive communication
service like Skype requires many functions, including user authen-
tication, telemetry, media encoder, dejitter, decoder, storage, and

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NOSSDAV’16, May 13 2016, Klagenfurt, Austria
c© 2016 ACM. ISBN 978-1-4503-4356-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910642.2910643

renderer. These functions are implemented using various program-
ming languages, run on different data centers, and could be offered
by different, internal or external, organizations. One common ap-
proach to handle the complexity of large-scale multimedia systems
is to design various functions asweb services that are accessed
via platform-independent and standard protocols and interfaces like
RESTful APIs.

To serve a request like create a video conferencing session, the
system needs to construct and managedistributed transactions in-
volving various web services, while ensuring resources are not wasted
nor over-committed, consistency is always maintained, and concur-
rent transactions do not interfere with each other.

Web services are stateless in nature, which makes handling dis-
tributed transactions across multiple web services complex and ex-
pensive. This is exacerbated by the dynamic nature and continuous
updates of web services [12, 5, 2]. For example, new codecs can
be added as new web services, which a multimedia communication
service needs to consider without breaking the client code calling
the multimedia system.

The current approaches like the protocols in [1, 3, 11], and their
implementations in the OASIS projects [13] for managing distributed
transactions in web services are not efficient, can lead to substan-
tial waste of resources, and result in reduced multimedia session
capacity and quality. The inefficiency is mostly due to a limita-
tion in current protocols that prevents the system from selectively
adding and removing individual web services in a distributed trans-
action without incurring high overhead. To accommodate the dy-
namic and statelessness nature of web services, current protocols
may make the system include unnecessary web services in each
distributed transaction. Unnecessary web services for a transaction
are those that will not contribute to the successful execution of that
transaction. Since web services do not implement rollback [13], the
system must issue compensating transactions to reclaim the unused
resources and maintain consistency. Compensating transactions are
difficult to implement and take long time in real scenarios [13],
which result in higher client latency, reduced multimedia session
quality, and higher failure rates.

We propose a simple, practical, and effectiveoptimization to cur-
rent distributed transaction management protocols used in web ser-
vices. It allows individual web services toselectively participate
in distributed transactions that they contribute to their successful
completions, while fully supporting the dynamic updates of web
services, and not requiring any significant changes in the imple-
mentation of the web services or the systems using them.

Our implementation in a large multimedia system shows that the
proposed optimization substantially reduces the number of web ser-
vices that are defensively included in distributed transactions, re-
duce the number of compensating transactions, improves the effi-

ciency of the systems using the web services, enhances the number
of multimedia sessions that can be created between users, and en-
hances the media quality of these media sessions.

The contributions of this paper can be summarized as follows:
we present an efficient approach to dynamically select which web
services to include in distributed transactions in multimedia ser-
vices. We implement and evaluate the effectiveness of the pro-
posed approach in one of the multimedia communication services
used in Microsoft, that handles more than one million sessions per
second at peak time. We run the experiments for two weeks in a test
cluster that gets more than 200 million multimedia requests. The
results show that the proposed approach, on average, increases the
throughput of transactions by 36%, reduces failure rate by 35%,
the multimedia quality (Mean Opinion Score (MOS)) of the suc-
ceeded sessions by 9%, and reduces the overall time required by all
transactions by 35%.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related works in the literature. Section 3 presents the
proposed approach, and Section 4 describes its evaluation in the
considered multimedia system. Section 5 concludes the paper.

2. RELATED WORK
Several previous works attempt to address the transaction coor-

dination in distributed multimedia services. For example, Ott et
al. [7] address multimedia transaction coordination in distributed
services and note the lack of transport-level protocols designed to
work independently, as well as inability to share information be-
tween multimedia flows without coordinating data transport. They
propose an open architecture for sharing network state and transac-
tion information between multimedia flows. Li et al. [4] describe
the coordination required for en-route multimedia object caching in
transcoding processes for tree networks by requiring service trans-
action coordination between proxies on a single path or at individ-
ual nodes.

Poellabauer et al. [8] argue that real-time and multimedia ap-
plications require transaction coordination of event for multime-
dia delivery mechanism, and note that the observed low Quality
of Service in multimedia services is due to lack of effective dis-
tributed transaction coordination. Rainer and Timmerer [9] study
the impact of geographical distribution of multimedia services and
distributed peers, and propose a self-organized distributed transac-
tion synchronization method for multimedia content. They propose
a new distributed control scheme that negotiates a reference for the
playback time-stamp among participating peers.

Lin et al. [6] study the problems of multimedia distributed trans-
action latency and their impact on multimedia quality, and intro-
duce compression in graphics streaming. Shatnawi et al. [12] study
the use of distributed synthetic transactions to monitor and predict
failures in multimedia services. They incorporate a model were all
web services are considered part of the transactions, with no abil-
ity to dynamically define the atomicity of transactions. Riegen et
al. [10] note that scenarios using distributed transactions in online
web services are generally controlled by the service client; the ser-
vice client decides which web services to include in a distributed
transaction without any collaboration with the participating web
services.

We note that web service distributed transaction management
concepts are based on models built for distributed database sys-
tems [1, 3]. These models are inefficient for web services. The
OASIS projects [13] attempt to define standards for context, coor-
dination, and atomicity between disparate web services. Noting the
high cost of transactions in web services, our approach optimizes
the selection process of which web services to include in a transac-

Figure 1: Media Manager client and web services.

tion, builds on top of existing protocols, and adds an optimization
communication layer that allows the service client and participat-
ing web services to determine,together, the web services that need
to participate in a given transaction.

3. PROPOSED OPTIMIZATION
We propose the idea ofselective joining and defecting from dis-

tributed web transactions. This improves the efficiency of distributed
transaction protocols by allowing them to dynamically include web
services in transactions with minimal overhead and no code changes.

3.1 Background
Multimedia services are typically implemented as the collabora-

tion of multiple media web services. The constituent media ser-
vices may all be part of the same enterprise, or offered through
third party online services, such as Amazon Web Services (AWS)
[14] for storage. Figure 1 shows a high level diagram of an online
multimedia service. Sharing a video between two applications en-
tails getting the user IDs and validating them. The Media Manager
Client uses IDAccountManager() that provides create(), read(), up-
date(), delete(), and validate() user accounts. Then the Media Man-
ager Client downloads the video from the source application, per-
forms encoding and size optimization on it, caches the video on the
service to enhance the sharing experience and to allow for faster
re-attempts in case of delivery interruptions, and finally renders the
video for showing at the destination application.

The Media Manager Client uses the following services: Me-
diaEncoding(), MediaDecoding(), MediaStore(), MediaDejitter(),
and MediaRender(). The Media Manager Client is the component
that controls which web services join transactions. Procedure 1
shows a pseudo code example of how WS Coordination, Atomic-
Transaction, and BusinessActivity are used in the Media Manager
Client to create a transaction context, add web services to it, and
conclude the distributed transaction of sharing a video between two
applications. To keep the pseudo code simple, we only show how
the Media Manager Client creates a transaction context and include
web services in it. We show in the following subsections, how the
code in Procedure 1 is optimized when we apply the proposed ap-
proach.

3.2 Overview
From the example in Section 3.1, there are four steps to imple-

ment a transaction. (1) Create a transaction context, and register
all required web services in it. (2) Execute all web services in the
transaction context. (3) Commit the the transaction. (4) Finalize
and close the transaction context. The proposed approach works
during the first step; we give the web services, e.g., Create, Update,

Procedure 1Share a video
1: function ENCODEANDSHAREV IDEO

2: Create WS-CoordinationContext Context
3: Create an ActivityShareVideoActivity
4: Set Coordination Protocol /*e.g. Completion, VolatileTwoPhaseC-

ommit, or DurableTwoPhaseCommit*/
5: Set ShareVideoWebServices = Encoding, Storage, and Rendering
6: for eachWeb Service in ShareVideoWebServicesdo
7: RegisterService in ShareVideoActivity
8: Set Compensating Activity for each service inShareVideoActivity
9: for eachWeb Service in Contextdo

10: Call Web Service
11: if Web Service Failsthen
12: Set TransactionFailure = true
13: for eachWeb Service that succeededdo
14: Compensate for Web Service
15: if TransactionFailure is not truethen
16: for eachWeb Service in Contextdo
17: Commit Web Service
18: if Web Service Commit Failurethen
19: Set TransactionFailure = true
20: for eachWeb Service that succeededdo
21: Compensate for Web Service
22: if TransactionFailure is not truethen
23: Close Transaction Context

Read, Delete, Encoder1, Encoder2, Storage1, Decoder1, Decoder2,
Storage2, Renderer1, Renderer2, and Renderer3 in the Media Man-
ager example shown in Figure 1,the choice to join a transaction.
The proposed approach uses the existing web service REST APIs
in its communications.

Before we explain the proposed approach, we define the software
components that participate in it:

• Service Client: the service that applications call to perform
the multimedia communication, like the Media Manager Client
in Figure 1. It initiates the transaction and controls its lifecy-
cle and closure; either commit or rollback.

• Master Service: the service that has the registration infor-
mation of all participating web services and the data entities
they create, update, and/or delete.

• Web Service: the participating web service that represents
one atomic functionality provided to the Service Client, like
encoding a video.

In the proposed approach, the Service Client calls the Master
Service to get information about the web services it is going to
call. This includes data entities, like user and video, that the web
services write, update, or delete. The Service Client uses this infor-
mation to make an initial assumption to include the web service in
the transaction. The Service Clientmay allow some web services
to defect from the transaction if the web service does not impact
the transaction data entity, or to join the transaction if it does. This
eliminates the inclusion of web services in transactions where they
are not needed. This results in more media session capacity and
better quality, due to less client latency, faster transaction execu-
tion, and higher transaction success rate since fewer web services
are included and so less failure points. Also, less compensating
transactions after roll-back in case of transaction failures.

We propose two extra parameters in the methods of the web ser-
vices that participate in the proposed protocol: (1) a reference to the
type of entities that are impacted by the the transaction; e.g., user,
video, and audio. (2) An enumeration value that represents the
mode of the transaction. The proposed protocol has three modes
that control the web service participation in the transaction:

Figure 2: Summary of the proposed approach.

• All-In : this is the most common mode in practice in cur-
rent research and implementation of web service distributed
transactions [10, 13]. All participating web services are re-
quired to be part of all transactions. If any of them fails,
the transaction fails. In the call to the web service, the client
passes a reference to the type of entities that will be impacted
by the transaction, and a transaction enumeration value of
All-In that forces the web service to join the transaction.

• Defection-Allowed: the Service Client makes the assump-
tion that the web service is required in the transaction, based
on information acquired from the Master Service. The Ser-
vice Client includes the web service in the transaction in the
first step of creating the transaction context, but allows it to
defect if it does not impact the data entity at hand, like user.
In the call to the web service, the Service Client passes a
reference to the type of entities that will be impacted by the
transaction, and a transaction enumeration value of Defection-
Allowed. If the web service defects from the transaction, it
informs the Service Client through its return value.

• Join-Allowed: the Service Client makes the assumption that
the web service is not required in the transaction, it does not
include it in the transaction context in the initial call, but al-
lows the web service to join the transaction if it impacts the
entity at hand. In the call to the web service, the client passes
a reference to the type of entities that will be impacted by
the transaction, and a transaction enumeration value of Join-
Allowed. If the web service joins the transaction, it informs
the Service Client through its return value.

Figure 2 shows the new sequence of events for the example in
Section 3.1 of sharing a video between two applications. Note
the impact of our approach on the first and second steps: the En-
code(), Store(), and Render() web services are initially included
in the transaction context, but are given the chance to defect from
the atomic transaction. The Render() web service defects from the
transaction, and will be called by the Media Service Client after the
Encode() and Store() transaction is successful.

The following sub-sections describe how the Service Client, par-
ticipating web services, and Master Service implement the pro-
posed protocol.

3.3 Service Client Design
The Service Client maintains aTransaction Participation Ta-

ble (TPT) for the transactions it issues. The TPT has the issued
transactions, the participating web services, the entities involved,
and the web service transaction inclusion mode. If the Service
Client assumes a web service is part of a transaction, but allows

Table 1: Transaction Participation Table (TPT) example.
Trans-
action

Web Ser-
vice

Entity Web
Service
Inclu-
sion

Inclusion
Mode

1 Encode-
Video

Video In Defection-
Allowed

1 Store-
Video

Video In Defection-
Allowed

1 Render-
Video

Video Out Defection-
Allowed

Procedure 2DTFC Algorithm - Service Client
SERVICE CLIENT ALGORITHMS START A TRANSACTION
1: function STARTTRANSACTION

2: Create the Transaction Context
3: Create Activity, Specify Protocol, and Register Services
4: Get Web Service Table from Master
5: Get Entity Table from Master
6: Include every web service in the transaction that impacts transaction

entities, as found in the Master Entity Table
7: Create TPT
8: Call all Web Services that are included in the transaction
9: for eachEach Web Service Responsedo

10: Compare Returned WebService Inclusion Value with Initial
Assumption in TPT

11: if Inclusion Value is Differentthen
12: Update TPT Inclusion Assumptions for Web Service
13: Update Transaction Service Registration
14: Wait for all Web Services to Finish or Timeout
15: if Any Web Service In Transaction Fails or Timeoutthen
16: Roll Back through Compensating Transaction
17: if All Web Services Succeededthen
18: Commit Transactions
19: Conclude Transaction and Close Transaction Context

it to defect, and it defects, then the Service Client updates its TPT
to indicate the web service is not part of the transaction. After
all web services return from the transaction context creation, Step
1, the TPT is updated to reflect the web services inclusion in the
transaction. The Service Client then monitors the success and fail-
ure of the web services participating in the transaction, and closes
the transaction when done, through commit or roll-back, just as it
did without the proposed approach. Note that we did not impact,
update or change, the used coordination protocol. If it is Com-
pletion, VolatileTwoPhaseCommit, or DurableTwoPhaseCommit,
it will proceed as it did; only now with just theright set of web ser-
vices that need to be included in the transaction. Table 1, provides
an example of an updated TPT that shows the inclusion/exclusion
of EncodeVideo(), StoreVideo(), and RenderVideo() in the transac-
tion described in the example in Figure 2.

If the Service Client is in doubt about the need to include a web
service in a transaction, due to lack of information at the Master
Service, the Service Client includes the web service in the transac-
tion using All-In, or Defection-Allowed modes. The Service Client
algorithm is summarized in the Distributed Transaction Federated
Control (DTFC) algorithm shown in the "DTFC Algorithm - Ser-
vice Client" procedure.

3.4 Participating Web Service Design
Each participating web service registers with the Master Service;

the registration process is described in the "Master Service Design"
section. The web service checks the available entities in the Master

Procedure 3DTFC Algorithm - Web Service
WEB SERVICE ALGORITHMS INITIALIZE SELF WITH MAS-
TER
1: function INITIALIZATION

2: Register Self with Master
3: Check Available Entities at Master
4: Add Self to Existing Entity Writers That Web Service Impacts
5: Add Entities that Web Service Impacts to Master if They Do Not

Exist
JOIN TRANSACTION
1: function JOINTRANSACTION

2: Receive Call from Client to Create/Update/Delete Entity
3: if Transaction Join Value is not ALLINthen
4: if Transaction Join Value isJOINALLOWED then
5: if Web Service ImpactsEntities then
6: Join Transaction

DEFECT TRANSACTION
1: function DEFECTTRANSACTION

2: Receive Call from Client to Create/Update/Delete Entity
3: if Transaction Join Value is not ALLINthen
4: if Transaction Join Value isDEFECTIONALLOWED

then
5: if Web Service Does Not ImpactENTITY then
6: Defect From Transaction

Service Entity Table. If it impacts any existing entity, it adds itself
to the entity writers. If the web service impacts entities that are not
registered with the master, the web service adds these entities to the
master Entity Table, and adds itself as an entity writer.

Each web service adds two parameters to its APIs, the first is a
reference to the entities impacted by the Service Client call. The
other parameter is the transaction control enumeration described
above. It is important to note that by requiring participating web
services to report the metadata of the entities they impact, we do
not change the statelessness nature of the design and implemen-
tation of these web services; i.e. there is no execution state main-
tained. The participating web services implement the Initialization,
JoinTransaction, and DefectTransaction functions as shown in the
"DTFC Algorithm - Web Service" procedure.

3.5 Master Service Design
The Master Service maintains the following tables:

• Web Service Table: has all participating web services names,
endpoints, hosting data center, available methods, parame-
ters, authors, readers, writers, and creation date.

• Entity Table : has the entity name, ID, description, and web
services that update the entity. This table acts as an entity
dictionary for the system.

To register, each web service pulls the entity table from the Mas-
ter Service, updates the table with its entity information, and pushes
the updated table back to the Master Service. The Master Service
pings the web services regularly to ensure that they are still alive
and active. If a web service fails to respond to the Master Service
pings after a given threshold, the Master Service removes it from
the Web Service Table and from the entity writers in the Entity Ta-
ble. The Entity Table is an ever-increasing list; there is no need to
purge it. Service Clients call the master to get the web service in-
formation and the entity lists to allow them to make the right initial
assumptions about web services inclusion in their transactions.

4. EVALUATION
We implemented the proposed approach in the multimedia com-

munication service described in the Background section. It is one
of the largest services in the world, and deployed in 8 data centers
in 3 continents with more than one million transactions per second
at peak. We implement the proposed approach on 6 web services
in one data center. Service one, Account Management, manages
user information and implements Create(), Read(), Update(), and
Delete() user. Service two, Encode Multimedia, manages multi-
media information and implements EncodeMultimedia() and Ver-
ifyMultimedia(). Service three, Compress Multimedia, manages
multimedia size before transmitting it on the wire. Service four,
Dejitter Multimedia, manages the de-jittering of audio and video
content in live communications. Service five, Decode Multimedia,
decodes multimedia content after receiving it at the other end of
the communication channel. Service six, Multimedia Rendering,
renders the video frames before delivering them in a consumable
format to the receiving application.

We run the experiments on a test cluster of 10 servers that get
1% of the data center traffic. Each server is a quad-core intel
Xeon server with 12 GB RAM. We deploy the current approach
on 5 servers, and deploy the proposed approach on the remaining
5 servers. We implement the Service Client and the Master Ser-
vice on a separate server. We route the same traffic to both sets of
services for two weeks, a total of 200 million multimedia requests,
and measure the metrics described below. The average number of
distributed transactions generated within these requests is 27%, or
about 53 million distributed transactions. The remaining traffic is
comprised of requests that do not require setting a transaction.

The metrics we use to evaluate the proposed approach are:

• Throughput : the number of transactions handled per sec-
ond.

• Execution Time: the total time used by the system to finish
all transactions.

• Efficiency: the total computation savings, measured by how
many web services are excluded from transactions, as a re-
sult of the proposed approach. Note that the excluded web
services may still be required as part of the service function-
ality, but not as part of transactions. So failures in such web
services result in re-running them, but not in the rollback of
other web services that are needed in transactions.

• Failure Rate: the transaction failure rate reduction due to
only including web services that are needed in each transac-
tion.

• Media Quality : the quality of media (audio, video, and im-
age) that is shared between clients, using MOS. We use a
proprietaryautomated MOS algorithm. Automated MOS al-
gorithms enable quality measurements in test environments,
where sessions are generated programmatically between test
clients.

• Overhead: the extra calls incurred by querying participating
web services about their impact on the given transaction.

4.1 Results
Throughput : 53 million transactions ran over the two weeks of

the experiment for a total time of 41 hours and 47 minutes using the
proposed approach, and 64 hours and 36 minutes using the current
approach. The throughput of the proposed approach is 352 transac-
tions/second, and the current approach is 227 transactions/second.
The throughput enhancement is 36%.

0 2 4 6 8 10 12 14
Experiment Time (Days)

0

100

200

300

400

T
ra

n
s
a

c
ti
o

n
 T

im
e

In

 M
in

u
te

s

Current Approach
Proposed Approach

Figure 3: Transaction execution time.

0 2 4 6 8 10 12 14
Experiment Time (Days)

0

1

2

3

4

5

6

7

W
e

b
 S

e
rv

ic
e

s

P

e
r

T
ra

n
s
a

c
ti
o

n

Current Approach
Propposed Approach

Figure 4: Web services per transaction.

Execution Time: The execution time of the proposed approach
(41 hours and 47 minutes) is 65% of the current approach (64 hours
and 36 minutes). The reduction in execution time is due to the re-
duced number of web services required per transaction, which we
explain in the efficiency section. If any of the web services that is
no longer included in a transaction fails, it will not require rolling
back of the web services that were included in any transaction. Fig-
ure 3 shows the daily transaction execution time using the current
and the proposed approaches. The enhanced execution time of the
proposed approach is 36% on average over the time period of the
experiment.

Efficiency: The average number of web services included in
transactions in the current approach is 4.6, and in the proposed
approach is 2.9. The proposed approach is 37% more efficient
in using web services in transactions. These web services would
have been otherwise included, unnecessarily and incorrectly, in the
transactions. Figure 4 shows the daily distribution of web services
per transaction, for both approaches.

Failure Rate: From the service logs, the average transaction fail-
ure rate due to a web service failure that is not required in the trans-
action is 17 failures per million transactions. 6 of these, on average,
succeeded using the proposed approach since the web service fail-
ure did not impact the transaction. The failure rate reduction is
6/17, or 35%, as shown in Figure 5. The remaining 11 failures per
million were caused by failures in web services that were required
in the transactions. We note that the comparison is not perfect, but
as close to fair as we possibly could execute it; we pass the same
set of transactions to two identical sets of servers implementing the
two approaches. The number of web services that fail on the two
systems is very close; the difference is less than 2 failures per mil-
lion transactions.

The enhancements to Throughput and Execution Time of trans-
actions mean more resources are available to handle more media
sessions. The reduction of Failure Rate of transactions means the
media sessions that would otherwise have failed and required to be
reattempted, are now succeeding.

Media Quality : The succeeded transactions have seen an im-

0 2 4 6 8 10 12 14
Experiment Time (Days)

0

20

40

60

80

100

F
a

ilu
re

s

Current Approach
Proposed Approach

Figure 5: Transaction failure rate.

0 2 4 6 8 10 12 14
Experiment Time (Days)

2

4

6

8

10

12

M
O

S
 I

m
p

ro
v
e

m
e

n
t

P
e

rc
e

n
ta

g
e

MOS 4 to 5 Improvement

Figure 6: MOS increase from 4 to 5 over 14 days.

provement in their observed media quality (MOS). Figure 6 shows
that, on average 9% of the sessions that used to meet SLA with
good quality (MOS 4), are now meeting SLA with excellent qual-
ity (MOS 5). We attribute this enhancement to less number of web
services running as one atomic operation, which means more avail-
able resources, less load per transaction, and so higher quality.

Overhead: In Defection-Allowed and Join-Allowed modes, the
Service Client makes a call to each participating web service to de-
termine its transaction inclusion. The number of these calls and
replies are the Service Client overhead. It is found from the aver-
age number of web services per transaction without our approach,
which is 4.6 calls and their replies. We find the average overhead
cost, from the service logs, to be about 0.2ms per transaction. The
highest overhead noted was about 0.8ms. The average transaction
execution time reduction due to reducing the number of web ser-
vices in transactions from 4.6 to 2.9 is about 1.6ms. So the average
saving of the proposed approach outweighs the overhead of the Ser-
vice Client by an order of magnitude.

5. CONCLUSIONS
Current approaches to coordinate web service distributed trans-

actions cause client applications to include all possible web ser-
vices in distributed transactions.This is especially important in mul-
timedia communication services as any waste, loss, or inefficiency
in managing resources result in poor multimedia communication
quality, which leads to customer dissatisfaction and loss of busi-
ness. We presented a novel approach to allow multimedia web ser-
vices to selectively join or defect from distributed transactions de-
pending on their impact on the transactions. This reduced the num-
ber of multimedia services included in each distributed transaction,
which led to enhancing the throughput of multimedia distributed
transactions by 36%, and resulted in 9% media quality enhance-
ments from MOS 4 to 5.

6. REFERENCES
[1] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure

atomicity of composite web services. InProc. of ACM

Conference on World Wide Web (WWW’05), pages 138–147,
Chiba, Japan, May 2005.

[2] B. Gedik and L. Liu. Peercq: A decentralized and
self-configuring peer-to-peer information monitoring system.
In Proc. of the 23rd International Conference on Distributed
Computing Systems (ICDCS’03), pages 490–499,
Providence, Rhode Island, May 2003.

[3] K. Haller, H. Schuldt, and C. Turker. Decentralized
coordination of transactional processes in peer to peer
environments. InProc. of ACM International Conference on
Information and Knowledge Management (CIKM’05), pages
36–43, Bremen, Germany, May 2005.

[4] K. Li and H. Shen. Coordinated enroute multimedia object
caching in transcoding proxies for tree networks. InACM
Transactions on Multimedia Computing, Communications,
and Applications (TOMM’05), pages 289–314, New York,
NY, August 2005.

[5] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and
Y. Wang. Webprophet: Automating performance prediction
for web services. InProc. of USENIX Symp. on Networked
Systems Design and Implementation (NSDI’10), pages
143–158, San Jose, CA, April 2010.

[6] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang, and
B. Li. Liverender: A cloud gaming system based on
compressed graphics streaming. InProc. of ACM Conference
on Multimedia (MM’14), pages 347 – 356, Orlando, Florida,
November 2014.

[7] D. E. Ott and K. Mayer-Patel. An open architecture for
transport-level protocol coordination in distributed
multimedia applications. InProc.of ACM Transactions on
Multimedia Computing, Communications, and Applications
(TOMM’07), New York, NY, August 2007.

[8] C. Poellabauer, K. Schwan, and R. West. Coordinated cpu
and event scheduling for distributed multimedia applications.
In Proc. of ACM Conference on Multimedia (MM’01), pages
231–240, New York, NY, 2001.

[9] B. Rainer and C. Timmerer. Self-organized inter-destination
multimedia synchronization for adaptive media streaming. In
Proc. of ACM Conference on Multimedia (MM’14), pages
327–336, Orlando, FL, November 2014.

[10] M. Riegen, M. Husemann, S. Fink, and N. Ritter. Rule-based
coordination of distributed web service transactions. InProc.
of IEEE Transactions on Services Computing (SC’10), pages
60–72, 2010.

[11] D. Roman and M. Kifer. Reasoning about the behavior of
semantic web services with concurrent transaction logic. In
Proc. of Proceedings of IEEE Conference on Very Large
Data Bases (VLDB’07), pages 627–638, Vienna, Austria,
September 2007.

[12] M. Shatnawi and M. Hefeeda. Real-time failure prediction in
online services. InProc. of IEEE INFOCOM’15, Hong
Kong, April 2015.

[13] Oasis web services business process execution language
(wsbpel) tc and oasis web services coordination
(ws-coordination) and oasis web services atomic transaction
(ws-atomictransaction).
https://www.oasis-open.org/committees and
http://docs.oasis-open.org/ws-tx/wscoor/2006/06 and
http://docs.oasis-open.org/ws-tx/wsat/2006/06.

[14] Transaction library for dynamodb.
http://aws.amazon.com/blogs/aws/dynamodb-transaction-
library.

