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Mobile Multimedia Systems

« Tegra K1 — mobile multicore SoC
— 192-core CUDA-capable GPU (+ CPU cores)
— Enables: smart phones, tablets, laptops, drones, satelites..

— Applications: Video filtering operations, game and data streaming,
machine learning..

* Energy optimisation
— Battery limitation
— Environmental aspect

— Device failure
— Thermal Management

* How can we understand the relationship between software
activity and power usage?
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Tegra K1 SoC Architecture: Rails and Clocks

* Power on a rail can be described using
W Tegra K1 50C S the standard CMOS equations
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Tegra K1 SoC Architecture: Rails and Clocks
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Rate-Based Power Models

« Widespread use since 1997 (Laura Marie Feeney)
— On-line power models for smart phones, such as PowerTutor

« Concept is simple

— Power is correlated with utilisation levels
» E.g. rate at whichinstructions are executed, or rate of cache misses

— Multivariable, linear regression
— A typical model for total power
Events per second

Np
Piot = [0+ Z,Bipi
i=1

Constant base power cost ( v )
Event per second
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A Rate-Based Power Model for the Tegra K1

Predictor (CUPTI and PERF) Coefficient

GPU

CPU

L2 32Bread transactions persecond
L1 4B read transactions per second
L1 4B write transactions per second
Integer instructions per second

Float 32 instructions per second
Float 64 instructions per second
Misc. instructions per second
Conversion instructions per second
Active CPU cycles per second

CPU instructions per second

-18.6 nW per eps
0.0 nW per eps
-3.7 nW per eps
6.2 pW per eps
6.6 pW per eps
279 pW pereps
-300 pW pereps
236 pW pereps
887 pW pereps
1.47 nW per eps

[ .research laboratory ]

Model ignores

— Voltage variations
— Frequency scaling

Negative coefficients (we
«gain» power per event per
second)
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A Rate-Based Power Model for the Tegra K1

[9%] Jo.u9 1eWwnsd

Motion estimation CUDA-kernel

Estimation error can be as high as 80 %, and for some areas (green)

it is near perfect at 0 %

Estimation error for a motion estimation CUDAkernel

Rate-based models
should be used with

care over frequency
ranges!
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CMOS-Based Power Models

« Model switching capacitance aC directly for rails using the CMOS
equations

Prait = Pstar + den

v N\

Vraillleak aCVrzail f

« Use several CPU-GPU-memory frequencies, log rail voltages and
power

— Estimate I;,,, and aC using regression

« Advantages
— Voltages and leakage currents considered
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CMOS-Based Power Models

 Better than the rate-based one

frequencies

« Disadvantages / reasons
- «aC varies depending on workload

— Switching activity in one domain
(memory) varies depending on
frequency in another (GPU)

— ..but model assumes independent
relationship between aC and
frequency in other domains

[%] Jouid ewnsd

Accuracy generally > 85 %, but only about 50 % accurate on high

Estimation error for a motion estimation CUDAkernel
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Building High-Precision Power Models
« The problem is in the dynamic part of the CMOS equation:

Prait = Vegitliear + aCfVRZ

— ..which doesn’t consider that a«C on a rail is actually depending on frequencies in
other domains (e.g. memory rail aC depends on CPU and GPU frequency)

«  We now want to express switching activity in terms of measurable
hardware activity (similarly to rate-based models):

Ng > Number of utilisation
) predictors on rail R
Prait = Vraitlieak + z Cr,iPR,iVR

l=‘/ \
Capacitive load Hardware utilisation

per event per second predictor (events per
second)
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Understanding Hardware Activity

Npg
Prait = Viqitdieak T Z CR,ipR,ivlg
-

 We need to measure hardware activity in each of the
three rails

— Memory, Core and GPU rails

 What constitutes good hardware activity
predictors?

- pg,; can be cache misses, cache writebacks, instructions,
cycles..

— Shouldideally cover all hardware activity in a rail

— Major task in understanding and/or guessing what is going
in in hardware
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nderstanding Hardware Activity: GPU

™ GPU - GK20A

H Instruction Cache
GPU Rail

pu Voltage Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

72 MHZ 0.7]9 \
852 MHz | 1.05V

CPU - ARM Cortex-A15 4-Plus-1

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

HP Cluster LP Core

NEON

Register File Register File Register File Register File
16.384 x 32-bit 16.384 x 32-bit 16.384 x 32-bit 16.384 x 32-bit

Operand collectors Operand collectors Operand collectors Operand collectors

32KB L 32KB L1 .
2VB L2 Cache e CoroRail
LIp_|
e Eo e e ;
| ! 2 2
g £
512 k8 L2 cacne JECEIERRY = ¢ = : ==
3]
52t 8 =
N E ;
5
= = =
o Core | Core woist [l SFU Core f core Core | core core f core SFU 2 Core || Core Core f core
© 2
Memory Controller (MC) 64 bit (] ) g
= ore [ Core LDIST U ore @l Core | ore fl Core Core j Core SFU Core § Core
e~ 2 core|c: SF corefJc: corefJc
rbiter Protocol -1 [ =
| 3 H |
(=]
MC Clock 4 =
)
6 MHz g
WA oo emon Conoler S E : = ¢
462 MHz |
. . Memory Core
12 MHz 0.90V
924 MHz 1.05V .
DDR3 DDR3




UiO ¢ Department of Informatics [ .research laboratory ]
University of Oslo

Understanding Hardware Activity: GPU Cores

* NVIDIA provides CUPTI

— Fine-grained instruction counting

* We can therefore estimate switching capacitance per instruction type
— Some out of scope, such as Special Function Unit (SFU) instructions (sin, cos, tan, ..)

Core block dynamic power predictors
| | .
Dispatch Dispatch HPC Name Descrlptlon

16,984 % 3201 inst_integer Integer instructions

Operand colectors IR~ inst_bit_convert | Conversion instructions

peund inst_control Control flow instructions
EE — = . ——
inst_misc Miscallaneous instructions
inst_ fp_32/64 | Floating point instructions
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Understanding Hardware Activity: GPU Memory

« Easily the most complex part of dynamic power because memory is so flexible
— ..and because documentation is confusing (nvprof --query-events --query-metrics)
L2 cache serves read requests
— (CUPTIHPC)I2_subp0_total_read_sector_queries

— HPC for writes (12_subp0_total_write_sector_queries), but we cannot estimate a
capacitance cost for it — this indicates that L2 cache is write-back
«  Which is !

EMC

128 KB L2 Cache

64 KB Shared Memory / L1 Cache

Load / Store
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Understanding Hardware Activity: GPU Memory

L1 GPU cache has many uses:
— Caching global (RAM) reads not writes
— Caching local data (function parameters) and register spills
— Shared memory (read and written by thread blocks)

e No CUPTI HPC counts raw L1 reads and writes

— Must combine the HPCs for all types of L1 accesses to make our own counter:

HPC Name Description
11 _global_load_hit L1 cache hit for global (RAM) data
11 _local_{store/load} hit L1 register spill / local cache

|1_shared {store/load} transactions

— Shared memory
shared_efficiency
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GPU Summary

« Dynamic power (hardware activity predictors)

Pcpru,int'PGPUf32'PGPU,f641PGPU,cnv PGPUmsc*
Integer, float32, float64, conversion and misc. instructions per second

Ocpuizr Pepuiir Pepuiw. L2 reads, L1 reads and L1 writes per second
Peru - Active cycles per second (not subject to clock gating)

« Static power
- Igpyears GPU leakage current when rail on

* Total power for GPU rail:

Ngpu

_ 2
Pepu = Vepulcruiear + CepuiPcruiVipy
=1
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Understanding Hardware Activity: Memory

* Monitoring RAM activity is very

challenging
CPU Complex
 The Tegra K1 however has an activity [ 320t
mon Itor Memory Controller (MC) 64 bit GP U
— emc_cpu: total RAM cycles spent
serving CPU requests embr 2] Voltage
g q W’E External Memory Controller 7
— emc_gpu: total RAM cycles spent 02 Mz G Clock
serving GPU requests %sm Jrsz o eme MRl
1 o8 J o8 924 MHz| 1.05V
DDR3 DDR3

* In addition, the RAM continuously
spends cycles (no matter if it is inactive)
to maintain its own consistency



UiO ¢ Department of Informatics [ .research laboratory ]
University of Oslo

Memory Summary

« Dynamic power (hardware activity predictors)
PMmEMcpw PuEM, gpy: ACtive memory cycles from CPU and GPU workloads
- pusmcu- Active cycles per second (not subject to clock gating)

« Static power
— Memory is driven by LDO regulators and the rail voltage is always 1.35 V
— Therefore itis not possible to isolate leakage current

« Total power for memory rail:

NyEM

_ 2
Pyem = Z CymeMmiPvEM i VViEM
=1
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LP Core Summary

« Dynamic power
Pupipc: Instructions per cycle
pupci - Active cycles per second (subject to clock gating)

« Static power
Ieoreear- Core rail leakage current (always present)

* Total power for core rail:

NCOTG

— E 2
Pcore — coreIcore,leak + Ccore,ipcore,chore
=1

.research laboratory ]
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Finding the Right Answer

Pjetson — z (PR,dyn + PR,stat) + Ppase
RER |
4/ Npg

GPU, Core and memory rail
— 2 — )
Pp = E CriPRriVg Ppstat = Vraitlrleak
=1

 Unknown variables
— The switching capacitances Cy;
— The leakage currents I .«
— And the base power P, .,

« The resulting expression is linear where all voltages and predictors are known
— Which means we can find the coefficients using multivariable linear regression
— ..If we are careful enough..
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Finding the Right Answer

* Forregression to work, a training data set must be generated

— ..and the training software must be carefully designed to ensure that the predictors vary
enough compared to one another

« The following is the benchmark suite for the GPU
— Stress afew number of architectural units first
— All benchmarks run over all possible GPU and memory frequencies

Components / instructions under explicit stress

Penchmark Deseription CPU (R(AS\LIT) GPU (TEAPI,\IIT) L2 | L1 | INT | F32 | F64 | Conv. | Misc.
Idle CPU GPU off, CPU in idle state. v’
CPU-workload GPU off, CPU processing. v’ v~
Idle GPU GPU on and idle, CPU in idle state. v’ v’
L2 Read Stresses L2 cache reads only. v’ v’ v’
L1 Read Stresses L1 cache reads. v’ v v’ v’
L1 Write Stresses L1 cache writes. v’ v~ v~ v’
RAM Stresses RAM activity (GPU EMC). v’ v’ v~
Integer Stresses integer arithmetic unit. v’ v’ v’ v’
Float32 Stresses floating point unit. v’ v’ v’ v’ v’
Float64 Stresses floating point unit. v’ v’ v’ v’ v’
Control Stresses conversion instructions. v’ v’ v’ v’ v’
Misc Stresses miscellaneous instructions. v’ v’ v’ v’ v’
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Model Precision

Rate-based MVS
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Conclusion

 We have introduced a power modelling
methodology which captures power usage
with very high precision
— Considers voltages and detailed hardware
utilisation on separate power rails
— Can be used to analyse power usage of software

« Can be used to optimise power of different
multimedia workloads (10-40 % increased
battery time)

« A word of caution

— Power and energy in modern computing systems
are complex topics

— At least use models that are extensively verified and
shown to yield good accuracy across a wide range
of workloads

.research laboratory ]
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Power Prediction Over Time

DCT Kernel Power Breakdown

8 One Frame 1
o0 Tkt —— Measured Power
7 ——  Estimated Power ||
6 ——  CPU Power
o i GPU Power
% m M —— Memory Power
04 Kernel Launch
g Overhead Base Power
B |
2 ~
Kernel Launches
1 L b e =
6350 6400 6450 6500 6550

Time[ms]

« Our model is able to predict power usage of both CPU and GPU
execution with very high accuracy
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GPU Model Coefficients
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Leakage

AN

Rail Number Predictor Description Coefficient alue
0 Vapu GPU voltage Iypu.icak ( 0.27A
1 Papu,clock Total clock cycles per second gpu.clock 0n&
2 Papu.L2R L2 cache 32B reads per second Copu.L2R 10.79%
3 Pgpu,L1R L1 cache 4B reads per second Cypu,L1R 8.90%
GPU 4 Pgpu,L1W L1 cache 4B writes per second Copu,L1W 8.43 "‘}/
5 Papu,INT Integer instructions per second Copu,INT 41.11%
6 Pgpu, F32 Float (32-bit) instructions per second Cypu,F32 38.15%
7 Pgpu,F64 Float (64-bit) instructions per second Cypu,F64 115.33%
8 Popu,CNV Conversion instructions per second Cypu,CNV 72.42%
9 Papu, MSC Miscellaneous instructions per second Cygpu,MsC 28.36 p‘ﬁ’
0 Prmem.clock Total clock cycles per second Crem.clock 258.661)—‘5"
Memory 1 Bmem.204 Power offset at 204 MHz Prem 204 —0.03W
2 ,15’,,16,,,1;300 _x Power offset at 300 MHz Prem 300 0.05W
3 Pmem.CPU }J’PU busy memory cycles per second Crnem,epu 2.25%
4 Pmem.OTH Qt,-’ﬁer (GPU) busy memory cycles per second Jmem. oth 2.17%
Core 0 Vepu P CPU voltage Iepuleak 0.79A
1 Pepu e CPU instructions per cycle Jepu,cpi 3.725=
2 Pt acl CPU active cycles per second Cepu,act 166.62%
Other Pui<. Base power - 0.78W

P
The «memory offsets» compensate for variation in power
across memory frequencies (ref slide 9)

*  Supposed to be negative!

5/25/16
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Power Optimisation

Caching in L1 over L2 saves power
due to reduced external memory
accesses (EMC GPU)

— Because L1 is not cache coherent

Using shorter datatypes (float32 over
float64) also conserves energy

— Less direct computation and less conversion
instructions in our example

— Pascal and mixed precition (16-bit float)?
In our experience, optimising for power
is equivalent to optimising for
performance

— Which is good news ©

5/25/16
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DCT Kernel Power Breakdown
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Understanding Hardware Activity: GPU Memory (3)

« Shared memory complicates the picture..
— Memory is often broadcasted to all threads of a warp

— In this case, the I1_shared_load_transactions HPC counts all of the accesses,
but in hardware there was only a single access
« Same for writes

— Impossible to fix, but it is possible to approximate the actual accesses:
« M_shr_{load/store}=11_shared_{load/store} transactions * shared_efficiency
« Although it is not a really good solution.

HPC Name Description

|1_shared {store/load} transactions

Shared memory

shared_efficiency
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