
Kristoffer Robin Stokke, Håkon Kvale Stensland, Carsten Griwodz, Pål Halvorsen
{krisrst, haakonks, griff, paalh}@ifi.uio.no

A High-Precision, Hybrid GPU, CPU and RAM
Power Model for the Tegra K1 SoC

Mobile Multimedia Systems
• Tegra K1 – mobile multicore SoC

– 192-core CUDA-capable GPU (+ CPU cores)
– Enables: smart phones, tablets, laptops, drones, satelites..
– Applications: Video filtering operations, game and data streaming,

machine learning..
• Energy optimisation

– Battery limitation
– Environmental aspect
– Device failure
– Thermal Management

• How can we understand the relationship between software
activity and power usage?

Tegra K1 SoC Architecture: Rails and Clocks

𝑃"#$% = 	𝑃()#) + 𝑃+,-

𝑃()#) =	𝑉"#$%𝐼%0#1 𝑃+,- = 𝛼𝐶𝑉"#$%4
	𝑓

• Power on a rail can be described using
the standard CMOS equations

• Rail voltage 𝑉"#$%
• Increases with clock frequency

• Total power
• ..is the sum of power of all rails

Transistor leakage

Capacitive load per cycle
Cycles per second

Tegra K1 SoC Architecture: Rails and Clocks

• Clock frequency, rail voltage and power
usage are deeply coupled

• Increasing clock frequency increases
voltage, and vice versa

• From previous slide: power ∝ 	𝑉4
Measured Average Power

Measured GPU Rail Voltage

𝑃()#) =	𝑉"#$%𝐼%0#1 𝑃+,- = 𝛼𝐶𝑉"#$%4
	𝑓

Rate-Based Power Models
• Widespread use since 1997 (Laura Marie Feeney)

– On-line power models for smart phones, such as PowerTutor

• Concept is simple
– Power is correlated with utilisation levels

• E.g. rate at which instructions are executed, or rate of cache misses
– Multivariable, linear regression
– A typical model for total power

𝑃)7) = 𝛽9 +:𝛽$𝜌$

<=

$>?

Events per second

Cost (@
AB0-)	C0"	(0D7-+)

Constant base power

A Rate-Based Power Model for the Tegra K1

• Model ignores
– Voltage variations
– Frequency scaling

• Negative coefficients (we
«gain» power per event per
second)

Device Predictor (CUPTI and PERF) Coefficient

GPU

L2 32B read transactions per second -18.6 nW per eps

L1 4B read transactions per second 0.0 nW per eps

L1 4B write transactions per second -3.7 nW per eps

Integer instructions per second 6.2 pW per eps

Float 32 instructions per second 6.6 pW per eps

Float 64 instructions per second 279 pW per eps

Misc. instructions per second -300 pW per eps

Conversion instructions per second 236 pW per eps

CPU
Active CPU cycles per second 887 pW per eps

CPU instructions per second 1.47 nW per eps

A Rate-Based Power Model for the Tegra K1

• Motion estimation CUDA-kernel

• Estimation error can be as high as 80 %, and for some areas (green)
it is near perfect at 0 %

Rate-based models
should be used with
care over frequency
ranges!

Estimation error for a motion estimation CUDA kernel

CMOS-Based Power Models

• Model switching capacitance 𝛼𝐶 directly for rails using the CMOS
equations

• Use several CPU-GPU-memory frequencies, log rail voltages and
power
– Estimate 𝐼%0#1 and 𝛼𝐶 using regression

• Advantages
– Voltages and leakage currents considered

𝑃"#$% = 	𝑃()#) + 𝑃+,-

𝑉"#$%𝐼%0#1 𝛼𝐶𝑉"#$%4
	𝑓

• Better than the rate-based one
• Accuracy generally > 85 %, but only about 50 % accurate on high

frequencies

• Disadvantages / reasons
– 𝛼𝐶 varies depending on workload

– Switching activity in one domain
(memory) varies depending on
frequency in another (GPU)

– ..but model assumes independent
relationship between 𝛼𝐶 and
frequency in other domains

Estimation error for a motion estimation CUDA kernel

CMOS-Based Power Models

Building High-Precision Power Models

𝑃"#$% = 𝑉"#$%𝐼%0#1 + 𝛼𝐶𝑓𝑉F4	

• The problem is in the dynamic part of the CMOS equation:

– ..which doesn’t consider that 𝛼𝐶 on a rail is actually depending on frequencies in
other domains (e.g. memory rail 𝛼𝐶 depends on CPU and GPU frequency)

• We now want to express switching activity in terms of measurable
hardware activity (similarly to rate-based models):

𝑃"#$% = 𝑉"#$%𝐼%0#1 +:𝐶F,$𝜌F,$𝑉F4
<H

$>?

Number of utilisation
predictors on rail R

Capacitive load
per event per second

Hardware utilisation
predictor (events per
second)

• We need to measure hardware activity in each of the
three rails

– Memory, Core and GPU rails

• What constitutes good hardware activity
predictors?
– 𝜌F,$ can be cache misses, cache writebacks, instructions,

cycles..
– Should ideally cover all hardware activity in a rail

– Major task in understanding and/or guessing what is going
in in hardware

Understanding Hardware Activity

𝑃"#$% = 𝑉"#$%𝐼%0#1 +:𝐶F,$𝜌F,$𝑉F4
<H

$>?

Understanding Hardware Activity: GPU

Understanding Hardware Activity: GPU Cores
• NVIDIA provides CUPTI

– Fine-grained instruction counting

• We can therefore estimate switching capacitance per instruction type
– Some out of scope, such as Special Function Unit (SFU) instructions (sin, cos, tan, ..)

HPC Name Description
inst_integer Integer instructions
inst_bit_convert Conversion instructions
inst_control Control flow instructions
inst_misc Miscallaneous instructions
inst_fp_32/64 Floating point instructions

Core block dynamic power predictors

Understanding Hardware Activity: GPU Memory

• Easily the most complex part of dynamic power because memory is so flexible
– ..and because documentation is confusing (nvprof --query-events --query-metrics)

• L2 cache serves read requests
– (CUPTI HPC) l2_subp0_total_read_sector_queries
– HPC for writes (l2_subp0_total_write_sector_queries), but we cannot estimate a

capacitance cost for it – this indicates that L2 cache is write-back
• Which is surprising!

EMC

Understanding Hardware Activity: GPU Memory
• L1 GPU cache has many uses:

– Caching global (RAM) reads not writes
– Caching local data (function parameters) and register spills
– Shared memory (read and written by thread blocks)

• No CUPTI HPC counts raw L1 reads and writes
– Must combine the HPCs for all types of L1 accesses to make our own counter:

HPC Name Description
l1_global_load_hit L1 cache hit for global (RAM) data
l1_local_{store/load}_hit L1 register spill / local cache
l1_shared_{store/load}_transactions

Shared memory
shared_efficiency

GPU Summary
• Dynamic power (hardware activity predictors)

– 𝜌IJK,$-),𝜌IJK,LM4,𝜌IJK,LNO,𝜌IJK,D-B,𝜌IJK,P(D:
Integer, float32, float64, conversion and misc. instructions per second

– 𝜌IJK,%4", 𝜌IJK,%?", 𝜌IJK,%?R: L2 reads, L1 reads and L1 writes per second
– 𝜌IJK,D%1: Active cycles per second (not subject to clock gating)

• Static power
– 𝐼IJK,%0#1: GPU leakage current when rail on

• Total power for GPU rail:

𝑃IJK = 𝑉IJK𝐼IJK,%0#1 	+ : 𝐶IJK,$𝜌IJK,$𝑉IJK4
<STU

$>?

Understanding Hardware Activity: Memory

• Monitoring RAM activity is very
challenging

• The Tegra K1 however has an activity
monitor

– emc_cpu: total RAM cycles spent
serving CPU requests

– emc_gpu: total RAM cycles spent
serving GPU requests

• In addition, the RAM continuously
spends cycles (no matter if it is inactive)
to maintain its own consistency

CPU Complex

GPU

Memory Summary

• Dynamic power (hardware activity predictors)
– 𝜌VAV,DCW, 𝜌VAV,XCW: Active memory cycles from CPU and GPU workloads
– 𝜌VAV,D%1: Active cycles per second (not subject to clock gating)

• Static power
– Memory is driven by LDO regulators and the rail voltage is always 1.35 V
– Therefore it is not possible to isolate leakage current

• Total power for memory rail:

𝑃VAV = : 𝐶VAV,$𝜌VAV,$𝑉VAV4
<YZY

$>?
𝑉VAV = 1.35	𝑉

LP Core Summary
• Dynamic power

– 𝜌_J,$CD:	Instructions per cycle
– 𝜌_J,D%1 : Active cycles per second (subject to clock gating)

• Static power
– 𝐼D7"0,%0#1: Core rail leakage current (always present)

• Total power for core rail:

𝑃D7"0 = 𝑉D7"0𝐼D7"0,%0#1 + : 𝐶D7"0,$𝜌D7"0,$𝑉D7"04
<`abc

$>?

Finding the Right Answer

• Unknown variables
– The switching capacitances 𝐶F,$
– The leakage currents 𝐼F,%0#1
– And the base power 𝑃d#(0

• The resulting expression is linear where all voltages and predictors are known
– Which means we can find the coefficients using multivariable linear regression
– ..If we are careful enough..

𝑃e0)(7- = :(𝑃F,+,- + 𝑃F,()#))
F∈ℝ

+ 	𝑃d#(0

GPU, Core and memory rail
𝑃F,()#) =	 𝑉"#$%𝐼F,%0#1𝑃F =:𝐶F,$𝜌F,$𝑉F4

<H

$>?

Finding the Right Answer

• For regression to work, a training data set must be generated
– ..and the training software must be carefully designed to ensure that the predictors vary

enough compared to one another

• The following is the benchmark suite for the GPU
– Stress a few number of architectural units first
– All benchmarks run over all possible GPU and memory frequencies

Model Precision

Hybrid Model

DCT

Debarrel Rotation

MVSRate-based MVS

CMOS-based MVS

Conclusion
• We have introduced a power modelling

methodology which captures power usage
with very high precision

– Considers voltages and detailed hardware
utilisation on separate power rails

– Can be used to analyse power usage of software

• Can be used to optimise power of different
multimedia workloads (10-40 % increased
battery time)

• A word of caution
– Power and energy in modern computing systems

are complex topics
– At least use models that are extensively verified and

shown to yield good accuracy across a wide range
of workloads

5/25/16 24

Backup Slides

5/25/16 25

Power Prediction Over Time

• Our model is able to predict power usage of both CPU and GPU
execution with very high accuracy

DCT Kernel Power Breakdown

5/25/16 26

GPU Model Coefficients

Positive estimates J J J

Leakage

• The «memory offsets» compensate for variation in power
across memory frequencies (ref slide 9)

• Supposed to be negative!

5/25/16 27

Power Optimisation

• Caching in L1 over L2 saves power
due to reduced external memory
accesses (EMC GPU)

– Because L1 is not cache coherent

• Using shorter datatypes (float32 over
float64) also conserves energy

– Less direct computation and less conversion
instructions in our example

– Pascal and mixed precition (16-bit float)?
• In our experience, optimising for power

is equivalent to optimising for
performance

– Which is good news J

DCT Kernel Power Breakdown

5/25/16 28

Understanding Hardware Activity: GPU Memory (3)

• Shared memory complicates the picture..
– Memory is often broadcasted to all threads of a warp
– In this case, the l1_shared_load_transactions HPC counts all of the accesses,

but in hardware there was only a single access
• Same for writes

– Impossible to fix, but it is possible to approximate the actual accesses:
• l1_shr_{load/store} = l1_shared_{load/store}_transactions * shared_efficiency
• Although it is not a really good solution.

HPC Name Description
l1_shared_{store/load}_transactions

Shared memory
shared_efficiency

