Robustness of 3D Point Positions to Camera Baselines in Markerless AR Systems

Deepak Dwarakanath, Carsten Griwodz & Pål Halvorsen

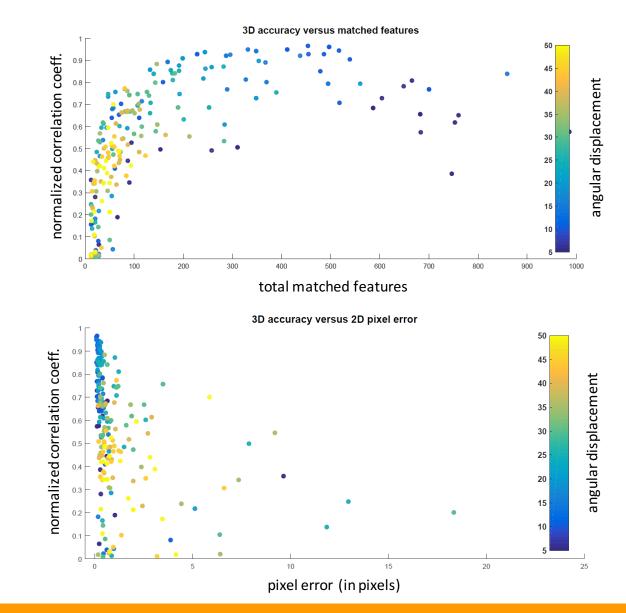
[simula] UiO **University of Oslo**

ACM MMSYS 2016 – Austria

10-13 May 2016

AR Application

- POPART project
- Quality of observer's position depends on accuracy of camera pose
- Markerless camera pose estimation is more challenging



Augmented preview of the film set

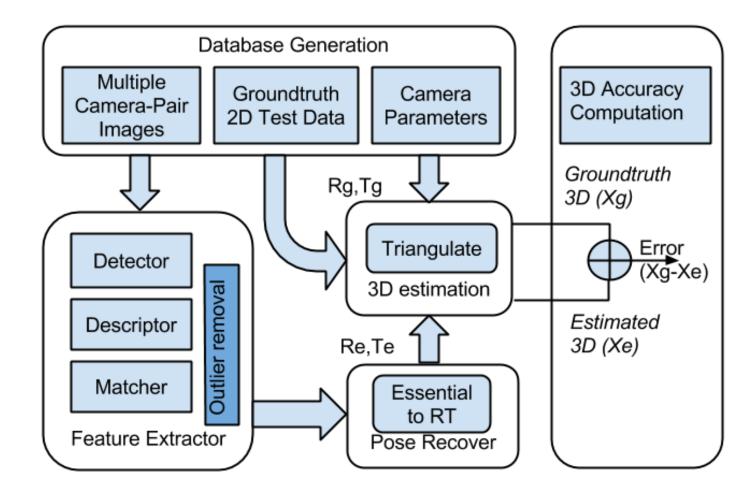
Commonly Known

Feature based calibration – camera pose estimated using sparse feature points detected in the images

- if the number of feature points is larger, the camera pose estimation is better
- minimizing the 2D error between the matched points yields better camera pose estimation

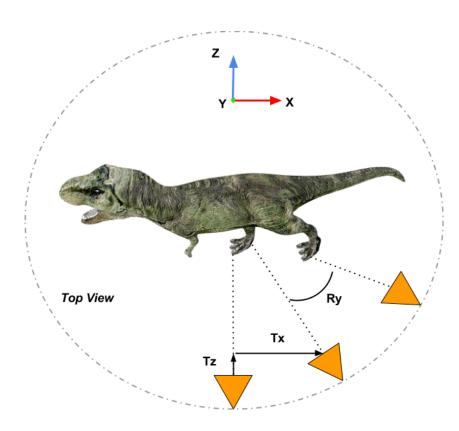
- Accuracy of camera pose based on state-of-art feature detectors and descriptors <u>cannot</u> <u>be guaranteed</u> with variation in camera baselines
- This paper explores the magnitude of such inaccuracy
- Evaluation of several state-of-art feature extractors
- Helps system builders to understand the operational limits and make better choices to design multimedia system
- Helps also to determine camera density around a scene

Related evaluation work


Focus on:

- Correctness of the feature matches
- Repeatability of features
- Reprojection error in 2D
- Limited candidates for evaluation

In this paper:


- Accuracy measured in 3D space metrics relates to the problem directly
- Several well-known feature extractors
- Obtain operational limits for all tested feature extractors (under specific conditions)

Experimental - Overview

Experimental - Datasets

- Turn-table configuration to keep the object size / distance constant
 - Camera centers 500 units from model's geometric center in model coordinate system
- 450 stereo pairs from 9 known models are captured at 60x600 resolution
- Known values
 - 3D mesh vertices
 - Corresponding 2D pixel positions on stereo images
 - Camera focal length and principal axes
 - Cameras' relative rotation and translation

Experimental - Feature Extractors

- 26 feature extractor combinations using several detectors and descriptors
 - Detectors MSER, STAR, FAST
 - Descriptors BRIEF, FREAK
 - Detectors and Descriptors SIFT, SURF, BRISK, KAZE, AKAZE and ORB
- Brute force matching
- RANSAC outlier removal

Experimental - Pose Estimation

Based on feature matching points in a stereo pair

- Essential matrix (E) is estimated
- Using SVD, E=[T]R
- Cheirality constraint to select optimal solution
- Hence,
 - Relative Rotation (R)
 - Relative Translation (T)
 - are estimated
- All measurements are in model coordinates and in model units

Experiments - 3D Estimation and Accuracy Computation

- Using feature-matched points + camera pose, triangulation is performed
- Resulting sparse 3D points are compared with ground truth points
- Computation in 3D space
 - Normalized Correlation Co-efficient error (used for comparative study)
 - Mean Squared Error

(used for design recommendation along with some penalties)

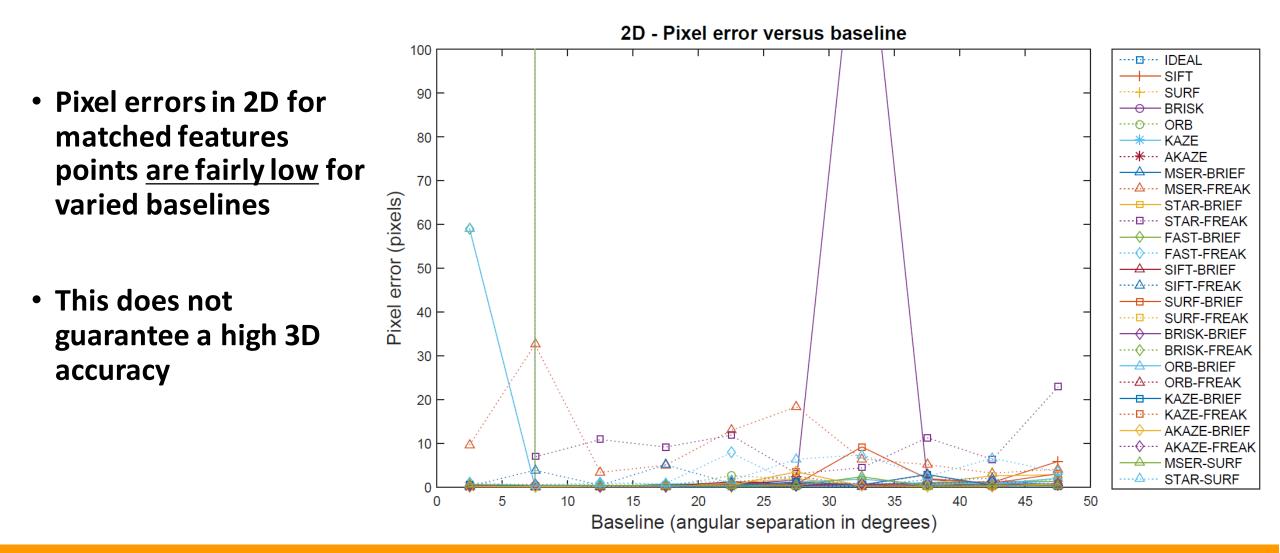
Results - overview

• Evaluation pipeline

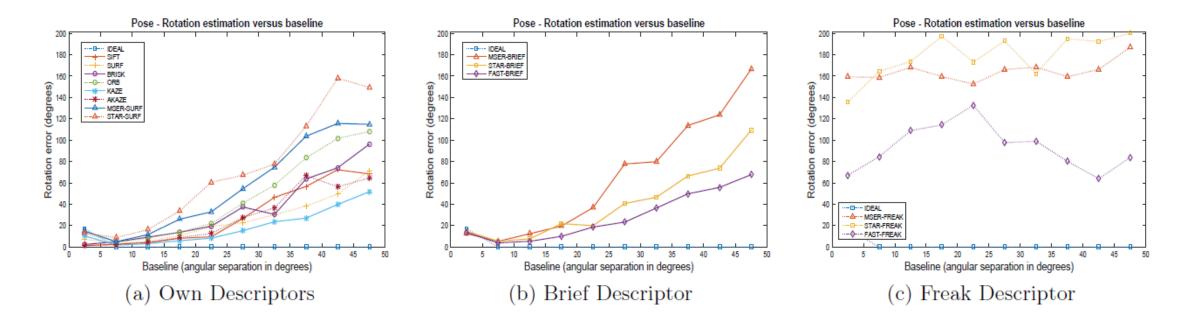
• 2D pixel error

Expressed as Sampson Error – second order approximation of geometric error

$$P_{error} = \sum_{i=1}^{N_p} \frac{(x'_i F x_i)^2}{(F x_i)_1^2 + (F x_i)_2^2 + (F^T x'_i)_1^2 + (F^T x'_i)_2^2}$$

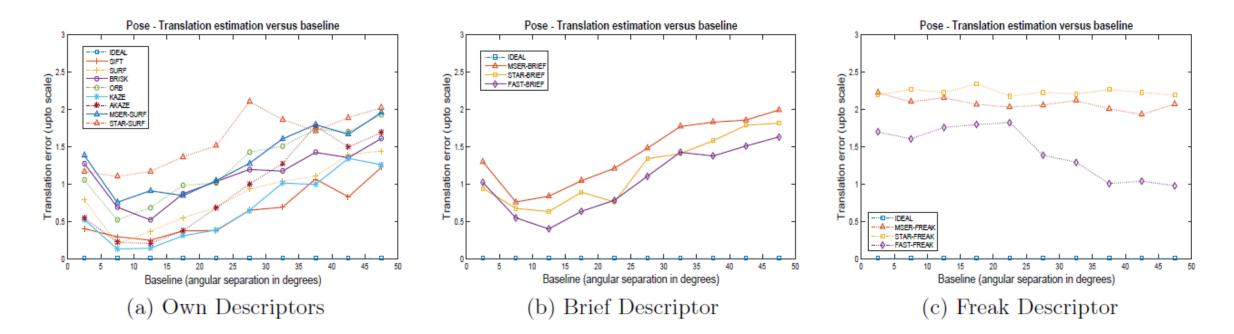

• Camera pose error

Comparing estimated rotation and translation with known values (in 3 axes)


• 3D estimation error

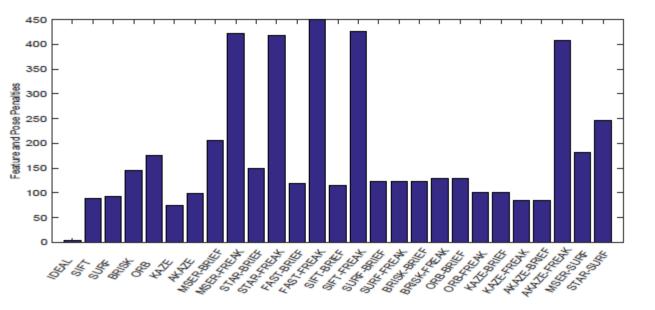
Determines performance evaluation and helps in design recommendation

Results – 2D pixel error

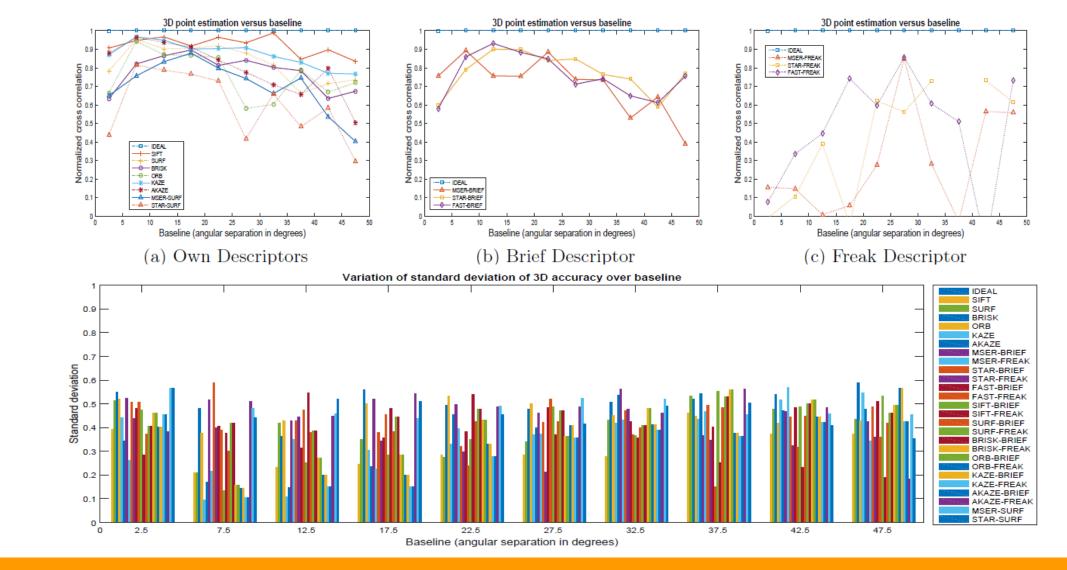


Results – Rotational Error

- Rotational Error increases with the increase in camera baseline (a) & (b)
- Although baseline refers to Ry, estimation of Rx,Rz results in non-zeros
- FREAK descriptor performs poorly

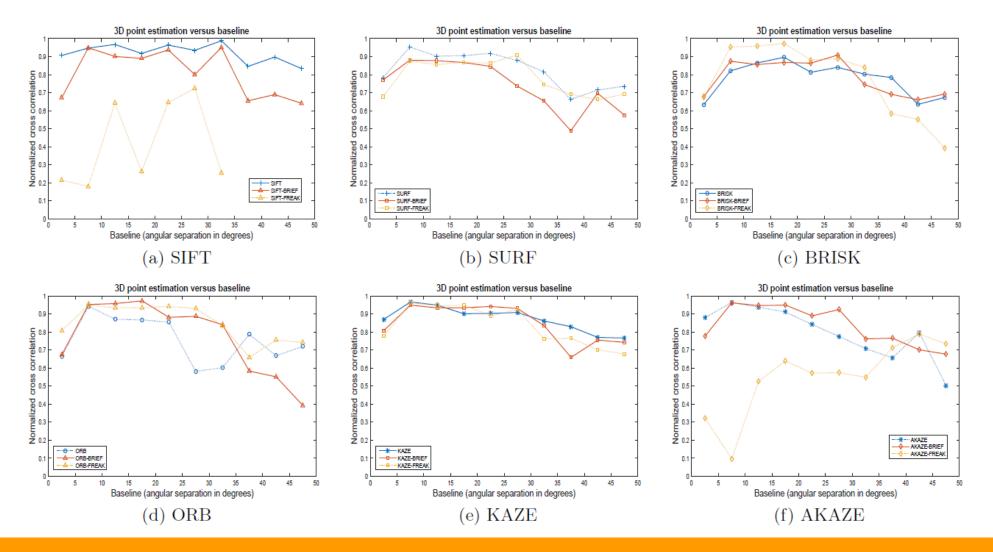

Results – Translational Error

- Translational Error increases with the increase in camera baseline (a) & (b)
- FREAK descriptor performs poorly


Results – camera pose error

- Possible reasons for camera pose error
 - Wrong matches even after outlier removal wrong essential matrix
 - Feature point matches confined to an area gives a wrong rotational estimation in terms of perspective
- Penalities occur when:
 - Translation error is more than unity
 - Rotation is more than 90 degrees
 - No matches were found

Result - 3D error


• Mean

 Standard Deviation

simula . research laboratory

Results – 3D error (More combinations)

[simula . research laboratory]

Performance Evaluation

Baseline (< 5) deg	Baseline (5 – 30) deg	Baseline (30 - 50) deg
SIFT, KAZE, AKAZE – good performers	SIFT, SURF, KAZE with their own descriptors	SIFT and KAZE perform better than any other
Rotation – translation ambiguity exists	BRIEF descriptor with all detectors except MSER, STAR, FAST	
	FREAK descriptor with SURF; BRISK ORB and KAZE	

- NCC Normalized Correlation error only a relative measure for comparison
- However this is not sufficient to choose a feature extractor

Design recommendations

- We consider MSE of the deviation is 3D reconstructed points
- We incorporate the penalties incurred by the feature extractors over all models in a range of baselines. This is presented as reliability of the feature

Feature extractors	$ \begin{array}{c} \mathbf{Baseline}(5^o-20^o) \ Rotation \ Position \end{array} $		$\begin{array}{l} \mathbf{Baseline}(20^o - 35^o) \\ \textit{Rotation} \textit{Position} \end{array}$				Time	Relia- -bility
	[degrees]	[model]	[degrees]	[model]	[degrees]	[model]	[sec- onds]	[per-cent]
	mean(deviance)		mean(deviance)		mean(deviance)			
IDEAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99.11
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		
SIFT	13.09	8.23	2.14	2.83	2.64	4.22	17.34	80.22
	(7.17)	(1.96)	(1.06)	(2.64)	(0.56)	(1.11)		
SURF	15.58	12.04	5.59	6.27	3.63	5.33	5.47	79.56
	(5.94)	(2.26)	(0.64)	(0.30)	(0.89)	(0.80)		
BRISK	20.21	25.31	6.43	18.73	3.82	88.69	1.75	67.56
	(8.94)	(13.48)	(2.41)	(13.03)	(0.52)	(141.00)		
ORB	21.04	9.41	8.29	33.30	3.93	9.22	0.85	61.11
	(9.31)	(0.47)	(1.54)	(41.34)	(0.05)	(6.91)		
KAZE	12.12	7.76	4.78	6.34	2.92	7.27	27.67	83.56
	(3.84)	(2.23)	(1.25)	(1.64)	(0.26)	(2.13)		
AKAZE	11.68	6.91	7.51	12.36	4.61	14.48	4.96	78.00
	(2.76)	(3.97)	(0.74)	(5.03)	(1.22)	(13.06)		
MSER-SURF	19.95	261.94	8.12	20.55	5.10	16.09	7.55	59.78
	(11.36)	(422.71)	(1.33)	(10.17)	(0.19)	(12.27)		
STAR-SURF	29.67	53.51	11.34	16.08	7.08	22.15	0.75	45.33
	(12.08)	(47.55)	(3.75)	(7.11)	(0.98)	(8.20)		

[simula . research laboratory]

Conclusion

- SIFT and KAZE seem to be promising in terms robustness over large baselines
- Low pixel error in matched features <u>does not guarantee</u> a good 3D accuracy; especially with variation in the camera baseline
- 26 feature combinations over 50 camera baselines were studied
- Design recommendation
 - To select feature extractor based on acceptable accuracy, execution time and reliability
 - To design the camera density to capture a scene for a given quality of service

Thank you