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AR Application

* POPART project

* Quality of observer’s position
depends on accuracy of
camera pose

* Markerless camera pose
estimation is more
challenging
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Commonly Known

Feature based calibration—camera pose
estimated using sparse feature points
detected in the images

- if the number of feature points
is larger, the camera pose
estimation is better

- minimizing the 2D error
between the matched points
yields better camera pose
estimation
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Scope

* Accuracy of camera pose based on state-of-art feature detectors and descriptors cannot
be guaranteed with variation in camera baselines

* This paper explores the magnitude of such inaccuracy

 Evaluation of several state-of-art feature extractors

* Helps system builders to understand the operational limits and make better choices to
design multimedia system

* Helps also to determine camera density around a scene
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Related evaluation work

Focus on:
* Correctness of the feature matches
* Repeatability of features
* Reprojectionerrorin 2D
* Limited candidates for evaluation

In this paper:
* Accuracy measured in 3D space metrics —relates to the problem directly
e Several well-known feature extractors

e Obtain operational limits for all tested feature extractors
(under specific conditions)
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Experimental - Overview
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Experimental - Datasets

* Turn-table configuration to keep the object size
/ distance constant

e Camera centers 500 units from model’s
geometric center in model coordinate system

* 450 stereo pairs from 9 known models are
captured at 60x600 resolution
* Known values
3D mesh vertices

* Corresponding 2D pixel positions on stereo
images

e Camera focal length and principal axes
e Cameras’ relative rotation and translation
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Experimental - Feature Extractors

» 26 feature extractor combinations using several detectors and descriptors

* Detectors - MSER, STAR, FAST
* Descriptors - BRIEF, FREAK
e Detectors and Descriptors - SIFT, SURF, BRISK, KAZE, AKAZE and ORB

e Brute force matching
e RANSAC- outlier removal
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Experimental - Pose Estimation

Based on feature matching points in a stereo pair
e Essential matrix (E) is estimated

Using SVD, E=[T]R

Cheirality constraintto select optimal solution

Hence,
* Relative Rotation (R)
* Relative Translation (T)

are estimated
All measurements are in model coordinates and in model units

simula - by thinking constantly about it



Experiments - 3D Estimation and Accuracy Computation

* Using feature-matched points + camera pose, triangulation is performed
* Resulting sparse 3D points are compared with ground truth points

* Computationin 3D space
e Normalized Correlation Co-efficient error
(used for comparative study)

* Mean Squared Error
(used for design recommendationalongwith some penalties)
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Results - overview

e Evaluation pipeline

* 2D pixel error

Expressed as Sampson Error— second order approximation of geometric error

- () Fz;)?
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e Camera pose error
Comparingestimated rotation and translation with known values (in 3 axes)

* 3D estimation error
Determines performance evaluationand helpsin design recommendation

simula - by thinking constantly about it



Results — 2D pixel error

2D - Pixel error versus baseline
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* Pixel errorsin 2D for
matched features sof
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Results — Rotational Error

Pose - Rotation estimation versus baseline Pose - Rotation estimation versus baseline Pose - Rotation estimation versus baseline
T T T T T T T T T T T T T T T T [5] T T T T T

MmMF MOF MWF . =
wf | _Sa 1ok e} oA
~—- SURF o 4 ’ - s &

o o A 1 160[ 100 Ak T A
0 _'f:'_m T M @ -
8 1ok |- maz ® ot o ol
> —A— MSER-SURF > 2 &
3 10f -l STAR-SURF \ - 120 5 10F o
ey .- ) g g K
gor o o g 1o g mof : F RS
] . ] o
c @} 0 c gl c @} ¢ 0 ]
3 4 % g | o g
s o : & oof 5 @
4 14 14
aft ot B ey
&~ MSER-FREAK
20 20 2 G-~ STARFREAK
T % -~ FAST-FREAK
s w8 w s w o ® s w s w % 5w m o m T m W w o w o w 50 % I T R R
Baseline (angular separation in degrees Baseline (angular separation in degrees) Baseline (angular separation in degrees)
(a) Own Descriptors (b) Brief Descriptor (c) Freak Descriptor

* Rotational Errorincreases with the increase in camera baseline (a) & (b)
* Although baseline refers to Ry, estimation of Rx,Rz results in non-zeros
* FREAK descriptor performs poorly
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Results — Translational Error

Pose - Translation estimation versus baseline Pose - Translation estimation versus baseline Pose - Translation estimation versus baseline
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* Translational Errorincreases with the increase in camera baseline (a) & (b)
* FREAK descriptor performs poorly
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Results —camera POSE error

* Possible reasons for camera pose error
* Wrong matches even after outlier removal — wrong essential matrix

* Feature point matches confined to an area — gives a wrong rotational estimation in
terms of perspective

* Penalities occur when:
* Translation erroris more than unity -
* Rotationis more than 90 degrees

e No matches were found
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Result - 3D error

3D point estimation versus baseline

3D point estimation versus baseline

3D point estimation versus baseline
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Results — 3D error (More combinations)

simula

Normalized cross correlation

Normalized cross correlation

[
=

o
o

e
=

=)
o

14
o~

e
w

©
i

=)

[
=

©
o

e
=

=]
o

14
-

e
w

©
i

e

=

3D point estimation versus baseline
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Performance Evaluation

Baseline (< 5) deg Baseline (5 - 30) deg Baseline (30 - 50) deg

SIFT, KAZE, AKAZE — good SIFT, SURF, KAZE with their SIFT and KAZE perform

performers own descriptors better than any other
Rotation — translation BRIEF descriptor with all
ambiguity exists detectors except MSER,

STAR, FAST

FREAK descriptor with
SURF; BRISK ORB and KAZE

* NCC — Normalized Correlation error — only a relative measure for comparison

e However this is not sufficient to choose a feature extractor
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Design recommendations

 We consider MSE of the deviation is 3D reconstructed points

 We incorporate the penalties incurred by the feature extractors over all models in a range
of baselines. This is presented as reliability of the feature

Feature Baseline(5° — 207) Baseline(20° — 357) Baseline(35? — 507) Relia-
extractors Rotation  Position  Rotation  Position  Rotation  Position Time  -bility
[degrees] [model] [degrees] [model] [degrees] [model] cE?fcfs-] inii
mean(deviance) mean(deviance) mean(deviance)
IDEAL (8:g8) (8:88) (gigg) (8:88) (8:88) (8:88) 000 99.11
SIET (173.107% (?:gg) (%:éé) (gigi) (gigg) (ii‘ﬁ) 7.3 80.22
SURE (%55.6218) (12?:20641) (3:22) (gigg) (g:gg) (gigg) AT T9.56
BRISK (28%241) (?giié) (g:i?) (g:gg) (3:23) (1%181..6090) Los 6756
ORB (291.530?) (g:i;) (igi) (Zﬁg) (gigg) (2:33) 085 G111
RAZE ({32.;42) (;;g) (11:;?) (?:gi) ((2):2?5) (;?;) 26T 8356
ARAZE (121..7668) (g:g;) (g:?};) (15?3336) (111:625;) (igiég) 196 7800
MSER-SURE (ﬁ)gg) (ig;:%) (?ég) (fgii)?) (3218) (ig:g% 795 5978
= N G R G,
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Conclusion

* SIFT and KAZE seem to be promisingin terms robustness over large
baselines

* Low pixel errorin matched features does not guarantee a good 3D accuracy;
especially with variation in the camera baseline

e 26 feature combinations over 50 camera baselines were studied

* Design recommendation
* To select feature extractor based on acceptable accuracy, execution time

and reliability
* To design the camera density to capture a scene for a given quality of
service
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Thank you
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