
Lighting Estimation from a Single 
Image of Multiple Planes

Pin-Cheng Kuo, Hsin-Yuan Huang, and Shang-Hong Lai
National Tsing Hua University 

Taiwan

ACM MMSys, Klagenfurt, Austria, May 12, 2016



NTHU CV Lab

Outline
• Introduction
• Related Works
• Proposed Method
• Experimental Results
• Conclusion

2



NTHU CV Lab

Motivation

• Augmented Reality (AR) has attracted increasing 
attention in recent years.

• Delivering a visually coherent rendering plays an 
important role in the AR applications.

• However, relatively little work has been done for 
online lighting estimation from the scene images.

3Introduction
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Problem Description
• In this paper, we aim to estimate the illumination 

conditions of near light source at indoor scene. And we 
render the lighting effect by using the estimated lighting 
parameters.

4Introduction

Near Light source Estimation Augmented Reality System
Estimating the lighting parameters 
from a single shaded image

Render the lighting effect for 
virtual contents
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Related works

• In the following, there are five primary research 
directions related to lighting estimation problem.
• Light probes
• Shadows
• Outdoor images
• HDR images
• Arbitrary geometry

5Related Works
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Lighting estimation from light probes
• Debevec [7] were among the first to estimate lighting by using a sphere. 

They capture the lighting environment map by photographing a mirror 
sphere, and relighting where all incoming distant illumination was 
modeled.

• Powell et al. [8] and Takai et al. [9] calibrated the near point light source 
by capturing images with two spheres. 

6

[7] Debevec, Paul. "Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and 
high dynamic range photography." ACM SIGGRAPH 2008 classes. ACM, 2008.
[8] Powell, Mark W., Sudeep Sarkar, and Dmitry Goldgof. "A simple strategy for calibrating the geometry of light sources." Pattern Analysis 
and Machine Intelligence, IEEE Transactions on 23.9 (2001): 1022-1027.
[9] Takai, Takeshi, et al. "Difference sphere: an approach to near light source estimation." Computer Vision and Image Understanding 113.9 
(2009): 966-978.
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Lighting estimation from shadows
• The principle of this idea is based on 

the geometry of the shadow caster and 
correct segmentation for the shadows 
and background.

• The work of Haller et al. [14] is an 
example of using the geometry with 
known objects to analyze shadows. 

• Wang and Samaras [15] presented a 
method for estimating multiple 
directional lights, from known geometry 
and Lambertian reflectance.

7

[14] Haller, Michael, Stephan Drab, and Werner Hartmann. "A real-time shadow approach for an augmented reality application using shadow 
volumes." Proceedings of the ACM symposium on Virtual reality software and technology. ACM, 2003.
[15] Wang, Yang, and Dimitris Samaras. "Estimation of multiple directional light sources for synthesis of augmented reality images." 
Graphical Models 65.4 (2003): 185-205.
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Lighting estimation from outdoor images

• Lalonde and Matthews [16] introduced a practical low 
dimensional parametric model that accurately captures 
outdoor lighting.

• They regard sun and sky as the directional light and 
ambient light, respectively, and propose a Hemispherical 
lighting model to model it.

8

[16] Lalonde, Jean-Francois, and Iain Matthews. "Lighting Estimation in Outdoor Image Collections." International Conf. on 3D 
Vision (3DV), 2014.
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Lighting estimation from HDR Cameras
• Meilland et al. [23] used an RGB-D camera as a dynamic 

light-field sensor, based on a dense real-time 3D tracking 
and mapping approach.

• The radiance map of the scene is estimated by fusing a 
stream of low dynamic range images (LDR) into an HDR 
image.

9

[23] Meilland, Maxime, Christian Barat, and Andrew Comport. "3D high dynamic range dense visual slam and its application to real-time 
object re-lighting." IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2013.
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Lighting estimation from arbitrary geometry
• Pilet et al. [18] presented a fully automated approach for 

geometric and photometric calibration by waving an arbitrary 
textured planar pattern in front of the cameras.

• Park et al. [22] focus on calibrating a near point light source 
rigidly attached to a camera using a single plane. They 
recover shading images by filtering high frequency gradients 
in the input image that correspond to albedo edges.

10

[18] Pilet, Julien, et al. "An all-in-one solution to geometric and photometric calibration." Mixed and Augmented Reality, 2006. 
IEEE/ACM International Symposium on ISMAR, 2006.
[22] Park, Jaesik, et al. "Calibrating a non-isotropic near point light source using a plane." Computer Vision and Pattern Recognition 
(CVPR), 2014 IEEE Conference on. IEEE, 2014.
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Contributions

• We propose an image-based approach that estimates
the illumination condition of a near point light source
for indoor scene.

• We generalize the original lighting estimation
algorithm for a 3D plane to 3D scenes containing two
or more planes.

• We develop an Augmented Reality system which
renders the virtual objects with plausible illumination
after estimating the illumination conditions from real
world.

11Contribution
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System Overview

12Proposed Method
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Shading Model
• Inspired by the work of Lalonde and Matthews [16], we

employ a simple directional lighting model as follows. The
intensity at the pixel (𝑥, 𝑦) in the image 𝐼 is given by

𝐼(𝑥, 𝑦) = 𝜌(𝑥, 𝑦) 𝑎 ∗ 𝑜(𝑥, 𝑦) + 𝑑 𝑛, 𝑙(𝑥, 𝑦) 0 ,	 (1)

• To simplify the problem, we assume the ambient occlusion
𝑜 can be ignored in our method.

• The albedo ρ can also be eliminated by replacing the input
image by the shading image.

𝐼(𝑥, 𝑦) = 𝑎 + 𝑑 𝑛, 𝑙(𝑥, 𝑦) 0,                                   (2)
𝑙(𝑥, 𝑦) = 𝑋4 − 𝑋(𝑥, 𝑦),                                       (2-1)

13

[16] , J.-F. Lalonde and I. Matthews. "Lighting Estimation in Outdoor Image Collections." 2nd International Conference on 3D Vision (3DV), 
2014
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Shading Image Estimation (1/2)
• Since we attempt to eliminate the effect of the diffuse

albedo 𝜌 in our shading model, we extract the shading
image from the input image using gradient filtering.

• Inspired the work in Park et al. [22], the shading image 𝐼6
can be recovered by minimizing the following objective
function.

I6 = argmin
>

∑ @>A
@B
− 𝑓 @DA

@B

E
+ 𝜆𝑤H 𝐼H − 𝑂H

E
H∈K

𝑓 𝑥 = L	𝑥				if	 𝑥 E < 𝜏
0					otherwise

14

[22] J. Park et al. "Calibrating a non-isotropic near point light source using a plane." IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 2014.
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Shading Image Estimation (2/2)

15

• The first term encourages the gradients
of 𝐼 to match the clipped gradients of 𝑂.

• The second term makes the intensity of
both images as similar as possible.

• The weight wp is defined by

	wX= 1− 𝑂H − 𝐺 ∗ 𝑂H , 
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I6 = argmin
>

∑ @>A
@B − 𝑓 @DA

@B

E
+ 𝜆𝑤H 𝐼H − 𝑂H

E
H∈K 	,

𝑓 𝑥 = L	𝑥				if	 𝑥 E < 𝜏
0					otherwise

,
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Plane Region Segmentation

16

• Here, we use the marker-based 3D pose
estimation technique commonly used in AR to
segment the input image.

• A reasonably good image segmentation for
plane regions can be obtained by projecting
these rectangle from world coordinates to
image coordinates by the projection matrix
estimated from camera pose estimation.
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Coordinates Transformation (1/2)

17

• By searching four corners of the square marker,
we can compute the homography matrix for each
marker.

𝜔𝑥H\

𝜔𝑦H\
𝜔

= 𝐻^
𝑥H
𝑦H
1

, 𝑧H\ =
`BAa 0bcAa

de

XH
g =

𝑥H\

𝑦H\

𝑧H\
,

• We transform each pixel 𝑝 ∈ 𝑃 from image
coordinates to the corresponding marker
coordinates.

• zX\ is assigned by the plane equation with the 𝑠-th

surface normal Ng =
𝑢
𝑣
𝑤

.
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Coordinates Transformation (2/2)

• After transforming to the marker coordinates,
we select a marker as the major marker,
whose coordinate system is regarded as the
world coordinate.

𝑋o
(p) = 𝑅(r)𝑋o

(r) + 𝑡(r), (7)

• The rotation matrix 𝑅(r) and translation
vector 𝑡(r) can be computed previously
since we know the layout of the markers.

• We can use Eq.(7) to transform the pixels
from other marker coordinates to the
coordinates of the major marker (world
coordinates).

18
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Lighting Parameters Optimization

19

• We define the error function:

E 𝜃 =vv 𝐼H − 𝑎 −
𝑑 𝑁^ x 𝐿H 0

𝑁^ 𝐿H

E

H∈Kz^∈{

,

𝐿H = 𝑋4 − 𝑋H

where 𝜃 = 𝑎, 𝑑,𝑁, 𝑋4 consists of the parameters that we want to optimize and 
𝑁 = {Ng|s ∈ S} is the set of the surface normal for all the regions 𝑠 ∈ 𝑆.

• We estimate the lighting parameter θ by minimizing the above error function. It

can be regarded as a nonlinear least square problem. Here, we employ the

COBYLA (Constrained Optimization BY Linear Approximations) algorithm [27]

to minimize it.

[27] Powell, Michael JD. "A direct search optimization method that models the objective and constraint functions by 
linear interpolation." Advances in optimization and numerical    analysis. Springer Netherlands, 1994. 51-67.
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Searching for markers

• In this section, we search the markers in the input image and
extract their four corners for camera pose estimation.

• To make the searching robust, we use the square marker
surrounded with a black rectangle.

• When the camera captures an image, the first step in our system is
binarizing the image with a threshold σ. The region of the black
rectangle would stand out in the binary image.

• Therefore, we can find the connected components and extract the
marker edges and corners. The marker corners will be used to
estimate the camera pose.

20
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SURF Feature Extraction and Matching
• To make pose estimation more accurate, we use Speeded Up Robust

Feature (SURF) to detect the interest points to establish point
correspondences between the marker pattern and the input image.

• Each pixel in marker pattern is regarded as a point represented in 3D
world coordinates.

• After extracting SURF feature points, we match these features to find
point correspondences between the input and marker pattern.

• As a result, we can obtain the 3D-to-2D point correspondences for
estimating camera pose.

21

Li
gh

tin
g 

Es
tim

at
io

n 
Al

go
rit

hm
Au

gm
en

te
d 

Re
al

ity
 

Sy
st

em

Proposed Method



NTHU CV Lab

Camera Pose Estimation
• In this section, we are going to estimate the transform matrix which

converts 3D world coordinates to 2D image coordinates.

• We can state this problem as a scene view is formed by projecting
3D points into the image plane using a perspective transformation.

min
�,�

v 𝐾 𝑅|𝑡 𝑋r − 𝑥r E

r

where 𝐾 is the camera matrix. It is a non-linear least-squares
minimization problem, and we estimate the rotation matrix 𝑅 and
translation vector 𝑡 while minimizing the reprojection error.

• Finally, the virtual objects are rendered at the corresponding
positions in the real image.

22
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Evaluation with Synthetic Images
• We generated 20 synthetic images by OpenGL programming.

• 600x600 resolution
• Rendered by Blinn-Phong model [5]
• The light intensity and position were generated randomly.

23Experimental Results
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Evaluation Metrics

• Mean absolute error (MAE)
• We generate the synthetic images

using estimated lighting parameters,
and compare them to the shading
image recovered from the input
image.

• Light position error
• We directly compute the Euclidean

distance between the estimated
results and the ground truth of the
synthetic images.

24

Input image Relight image

MAE: 10.9667

Experimental Results
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Comparison of multi-plane and single-
plane method

25Experimental Results

Ev
al

ua
tio

n 
w

ith
 

Sy
nt

he
tic

 Im
ag

es
Re

al
 D

at
as

et
 

Ev
al

ua
tio

n



NTHU CV Lab

Comparison with Park et al.’s work

• We evaluate with the dataset 
released from Park et al. [22].

• There are two datasets 
captured in different dark 
rooms.

• CAMERA-LED has 42 images of 
whiteboards

• SLR-FLASH has 31 images of 
whiteboards

26

[22] Park, Jaesik, et al. "Calibrating a non-isotropic near point light source using a plane." Computer Vision and Pattern 
Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.
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Comparison with Park et al.’s work

27

CAMERA-LED SLR-FLASH
Park et al. [22] 8.97 15.35

Ours 6.77 6.76

Ours * 5.61 5.11

Input image

MAE : 4.32606

Table1. The MAE comparison between Park et al.’s work 
[22] and our proposed method.

Input_shading Relight_shading
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AR System Implementation

• Based on ARToolkit
• A simple framework for creating real-time augmented reality 

applications
• Based on OpenGL

28Experimental Results
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AR demo video

29
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Conclusion

• We propose a novel lighting estimation method from a single 
image of 3D planes.

• To improve the performance for the case of the images 
containing two or more planes, we utilize the planar markers 
to estimate the simple layout of the 3D scene easily.

• We compare the proposed algorithm with the method by 
Park et al. [22] and our estimation results are considerably 
better than those of the previous method.

• We also developed an augmented reality system that 
renders virtual objects with plausible illumination by using 
the lighting parameters estimated by the proposed algorithm 
from the input image.

30Conclusion
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Algorithm 1 Lighting estimation method

Input : An image 𝐼 to be estimated, the corners of each marker in image coordinates 𝐶.
Output : the intensity of ambient 𝑎 and diffuse 𝑑, the set of the surface normal 𝑁 and 
light source position 𝑋4.

1: Estimate the shading image 𝐵 from the input image 𝐼 by minimizing the Eq. (3).
2: Segment plane region 𝑆 using the markers in the input image 𝐼.

for each plane 𝑠 in the set of plane region 𝑆
3:  𝐶^ ← find the correspondences from 𝐶
4:    𝐻^ ← compute the homography matrix by 𝐶^

for each pixel x in the plane 𝑠
5:     X(g) ← Transform 𝑥 from image coordinates to corresponding marker 

coordinates by 𝐻^
if s ≠ 1

6:        Convert X(g) to the major marker coordinates X(p)
end if

end for
end for

7: Estimate the lighting parameters 𝜃 = [𝑎, 𝑑, 𝑁, 𝑋4] by minimizing the error function 
Eq.(8-1)

31
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Error function Verification

32Experimental Results

Ev
al

ua
tio

n 
w

ith
 

Sy
nt

he
tic

 Im
ag

es
Re

al
 D

at
as

et
 

Ev
al

ua
tio

n



NTHU CV Lab

Example of the comparison

33

MAE Average cost ambient diffuse n_x n_y n_z n_x n_y n_z pos_x pos_y pos_z input initial guess

GT 0.10 0.35 0.00 0.00 1.00 0.00 -1.00 0.00 -30.00 -12.00 30.00 synth_25

11.7793 0.000029532 0.135372 0.331123 0.459847 0.00234666 0.887995 0.149743 -0.988699 0.0072146 -9.52394 -2.90508 19.0437 synth_25 [0.1, 0.35, 0, 0, 20]

11.6027 0.000049816 0.0873997 0.404178 -0.0106057 0.00131071 0.999943 X X X -39.5887 9.10934 31.7505 synth_25 [0.1, 0.35, 0, 0, 20]

Multi-plane_shadingInput_shading Single-plane_shadingInput image

Experimental Results
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Example of the comparison

34

MAE Average cost ambient diffuse n_x n_y n_z n_x n_y n_z pos_x pos_y pos_z input initial guess

GT 0.4553 0.2909 0.00 0.00 1.00 0.00 -1.00 0.00 -23.6197 -35.4461 26.1856 synth_28

11.6825 0.000033115 0.216919 0.519694 -0.146361 -0.0921812 0.984927 -0.0928225 -0.935315 0.3414240 -27.4901 -34.13 38.9412 synth_28 [0.1, 0.35, 0, 0, 20]

17.1857 0.000079786 0.214364 0.477558 0.00216587 -0.0018267 0.999996 X X X -3.6466 31.1282 73.042 synth_28 [0.1, 0.35, 0, 0, 20]

Multi-plane_shadingInput_shading Single-plane_shadingInput image

Experimental Results
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Results of real scene including two planes

35Experimental Results
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Results of real scene including two planes

36

(c) (d)

Experimental Results
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Results of real scene including three planes
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(a) (b)

(c) (d)
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