

## Enhancing Multimedia QoE via More Effective Time Synchronisation over 802.11 Networks

Jonathan Shannon Padraig O'Flaithearta Yusaf Cinar Hugh Melvin

Disc. of Information Technology, National University of Ireland, Galway.



## Outline

- Multimedia & Synchronisation
- Computer Clocks, Synchronisation Terminology & Techniques
- 802.11, NTP & Issues
- Simulations
- Delay Determination Technique
- Experiments & Results
- Questions



# Growing Role of Synchronisation

• **VoIP** (Voice over IP)





# Growing Role of Synchronisation

• **MMOG** (Massive Multiplayer Online Game)





# WebRTC

#### • WebRTC

- Open source project released by Google in 2011
- Aim to equip browsers with RTC capabilities
- W3C standardising ECMAscript API's
- IETF standardising underlying RTC protocols (Rtcweb WG)

#### • WebRTC & VoIP

- Techniques to cope with variable packet latencies (Jitter buffer and play-out strategy algorithms)
- WebRTC NetEQ component
- NetEQ can benefit from packet delay information improve QoS
- Synchronisation of wireless nodes important

5



# System Clock Operation





# Synchronisation Terminology

- Host & Reference
- **Offset** Time difference between a host time and a reference time
  - Indication of clock accuracy
  - Denoted by *θ*
- **Skew** Rate of change of host's time with respect to reference's time
  - Influenced by oscillator precision/accuracy
  - Denoted by  $\lambda$
- **Drift** Rate of change of host's skew with respect to reference's time
  - Influenced by oscillator **stability**
  - Denoted by  $\boldsymbol{\varphi}$



Reference

# Sources of Synchronisation Error

#### Send Time

 Timestamp, construct message & send to NIC (system load, system call latencies)

#### Access Time

- Access communication medium
- (MAC rules)
- Propagation Time
  - **Traverse link** between sender and receiver

#### Receive Time

NIC receive & decode time and time interval before timestamp



Host



# Synchronisation Techniques

#### Uni-directional Synchronisation

• **Host** sets its time to the value received in a time message from a **reference** 

#### Round-trip Synchronisation

- Two-way message exchange
- Host obtains timestamps  $T_i, T_{i+1}, T_{i+2}$  and  $T_{i+3}$
- Determines round-trip delay ( $\delta$ ) and offset ( $\theta$ )
- $\delta = (T_{i+3} T_i) (T_{i+2} T_{i+1})$
- $\theta = (T_{i+1} T_i) + (T_{i+2} T_{i+3})/2$





# Synchronisation in WiFi Networks

- Offset
  - $\bullet \quad \mathbf{A} = T_{i+1} T_i$
  - $\bullet \quad \mathbf{B} = T_{i+3} T_{i+2}$
  - $\theta = (T_{i+1} T_i) (T_{i+3} T_{i+2})/2$
- WiFi/802.11
  - Access & buffer delays
- NTP
  - Degrade performance





# Up-link & Down-link Delays





### Simulations – NS3







### Simulations – NS3

Average Up-Link & Down-Link Delays



 $<sup>\</sup>epsilon = (uplink) - (downlink)/2$ 



### Simulations – NS3



14



### Solution





# Up-link Delay $(\Delta u)$ Determination





# Down-link Delay (**\Deltage d**) Estimation





# **Down-Link Delay Estimation**





# Experiment – Real Test-Bed

- How effective is it?
- **NTP client** sends 20 NTP packets per minute
- **A** & **B** transmit TCP packets to each other via **AP**
- Create load at AP induce large **buffer delays**
- Duration 60 mins





### Traffic





### **Up-Link Delays**

**UP-LINK DELAYS** 



21



## Down-Link Delays

DOWN-LINK DELAYS



22



# Results – Offsets (**θ**) & Errors (**ε**)



| Δu         | up-link delay             |  |  |  |
|------------|---------------------------|--|--|--|
| Δd         | down-link delay           |  |  |  |
| θτ         | true offset               |  |  |  |
| θυ         | un-corrected offset       |  |  |  |
| θc         | corrected offset          |  |  |  |
| <b>£</b> u | un-corrected offset error |  |  |  |
| <b>E</b> c | corrected offset error    |  |  |  |







# Error Distribution (Ev) (un-corrected)

ERROR FREQUENCY HISTOGRAM





# Error Distribution (Ec) (corrected)

ERROR FREQUENCY HISTOGRAM





#### Outcome

- Module/Technique reduces synchronisation errors in 802.11 networks
- Can be used on any host with
  - Protocol that uses **uni-directional** or **round-trip** synchronisation
  - NIC that supports **packet injection**
- Results indicate up to **90% reduction** in average offset errors
- Improve quality of dataset provided to time protocols



### References

- P. O. Flaithearta, H. Melvin, and P. Pocta. **Time awareness in software defined networking**. European Conference on Networks and Communications, 2015.
- P. O Flaithearta, H. Melvin, and M. Schukat. **A qos enabled multimedia wifi access point.** International Journal of Network Management, 25(4):205–222, 2015.
- Y. Cinar, H. Melvin, and P. Pocta. A black-box analysis of the extent of time-scale modification introduced by webrtc adaptive jitter buffer and its impact on listening speech quality. Special Issue of Communications journal (Scopus) on Telecommunications Beyond, 2016.



# Questions