

Profiling Energy Consumption of DASH Video Streaming over 4G LTE Networks

Profiling Energy Consumption of DASH Video Streaming over 4G LTE Networks

Jingyu Zhang¹², Gan Fang¹, Chunyi Peng¹, Minyi Guo², Sheng Wei³, **Vishy Swaminathan**³

¹The Ohio State University, USA

²Shanghai Jiaotong University, China

³ Adobe Research, Adobe

Video Consumption on Mobile Devices

You Tube vince NETFLIX hulu Dailymotion (III) > 80% traffic by 2019

Video Streaming over 4G LTE Networks

- 4G speed: >> 3G
 - Avg: 4~12 Mbps
 - Peak: 50Mbps
 - HD-video streaming

- Battery limit
 - Supports 3-5 hrs online video playing

DASH: Dynamic Adaptive Streaming over HTTP

Resolution, segment length, buffer size

Measurement Methodology

- Open source streaming testbed
 - Server: Jetty
 - Player: Dash.js
 - Segmenting: MP4Box
- 4G LTE networks: T-Mobile and AT&T
- Power monitor: Monsoon
- Sample video: timer

6

Coarse-Grained Profiling

- Online vs Offline (no network activities)
- Background power (basic: screen, CPU, memory etc)

Testing Settings

- Video Quality (Resolution)
 - 360p, 720p, 1080p
- Segment Length
 - 2sec, 3sec, 4sec
- Buffer Size
 - 30sec, 45sec, 60sec

8

Resolution

Segment Length

9

Buffer Size

K 2 1

Video Resolution

- Settings
 - Resolutions: 360p, 720p, 1080p
 - Segment length: 2s, 4s
- higher res consumes more power
 - 360p: 331mW
 - 1080p: 619mW (187%)

10

Segment Length

- Settings
 - Resolutions: 720p
 - Segment length: 2s, 3s, 4s
- Larger segment length consumes less power
 - 2s: 521mw
 - 4s: 361mw (69.3%)

Buffer Size

- Settings
 - Resolutions: 720p
 - Buffer: 30s, 45s, 60s
- Larger buffer size consumes less power
 - 30s: 521mw
 - 60s: 422mw (81%)

Signal strength?

LTE Signal Strength (Speed)

- Settings
 - Resolutions: 720p
 - Strong: 8-20Mbps
 - Weak: 3-3.8Mbps
- Faster LTE speeds consumes less power.

Analysis and potential savings RRC (radio resource allocation)

RRC connection

- UE sends a RRC connection request to eNodeB
- 2. eNodeB responds UE with a RRC connection message
- 3. Finally the UE proceeds to complete the procedure by send a RRC Connection Complete message

16

RRC State Transition over 4G LTE

- RRC: Radio Resource Control
 - States: Idle (low power) and connected (high power)
 - Procedures: promotion and demotion

RRC Tail: No transmission but at high power

RRC tails in power traces

Potential Saving

- Larger segment length
 - Segment Length: 2s

Segment Length: 4s: Saving: 30.7% (97.8J in the example)

- Larger buffers
 - Buffer Size: 30s

Buffer Size: 60s Saving: 19%

Summary

- Profiled impact factors of video streaming network energy consumption
 - resolution
 - segment length
 - buffer size
 - Network condition
- RRC tail: energy wastes
 - Consistent with prior findings
- 30%+ potential saving (theoretically)
- Future work: energy-efficient network-aware video streaming

Questions ?

