
Evaluating and Improving Push based Video Streaming with HTTP/2
Mengbai Xiao1, Vishy Swaminathan2, Sheng Wei2,3, Songqing Chen1

1George Mason Universty, 2Adobe Systems, 3University of Nebraska-Lincoln



HTTP Streaming

2



HTTP Streaming

3

HTTP request (Qlty#1)

Video segment (Qlty#1)

Qlty#1

Qlty#2
Qlty#3

Qlty#4

Video
CDN

Cache



Downgraded Throughput

§ HTTP streaming is build upon TCP
§ Sawtooth pattern traffic

§ Short segment duration 
§ live latency 

§ High network adaptability

§ User abandonment behaviors lead to less waste of 

network resources

§ request explosion

4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

H
TT

P 
R

eq
ue

st
 R

at
e 

(R
eq

s/
s)

Segment Duration (s)

no-push



Video Streaming enhanced by HTTP/2

5

Cable TV Users

HTTP Streaming Users

1:0 “Goal”

2080 × 2080 - logo-kid.com 



K-Push

6

Request

Response

Push

Request

Response

HTTP 1.1 HTTP/2

…

Client Server

(b) All-Push

…

Client Server

(a) No-Push

Client Server

…
…

…

(c) K-Push



Demo

7

Live Event

~18.7 sec

Playback

Regular Approach

Our Approach

~3.7 sec



Server Push Mechanism and k-push

§ The server push mechanism is proposed in HTTP/2
§ HTTP servers speculatively push back HTTP responses that the client does not request yet

§ K-push is a solution to relieve the request explosion problem
§ One request for k+1 segments

§ More practical than the pipeline solution
§ Less requests are delivered via network and 

are processed on servers

§ The knowledge of future segment URLs are not required

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

H
TT

P 
R

eq
ue

st
 R

at
e 

(R
eq

s/
s)

Segment Duration (s)

no-push
k-push (k=9)



9

Adaptive Push EvaluateAnalyze K-Push



K-push Model

§ K-push description
§ A push cycle consists of a HTTP request and k+1 HTTP responses

§ The lead segment of a push cycle is the first segment transmitted 
§ Lead segment implies the bit rate level selected for the push cycle

10

playback buffer

push cycle (k = 2)

RTT

data
transmission

Lead segment



Verification

§ Experimental parameters
§ Video length: 120s

§ Video qualities: 49 kbps, 217 kbps, 504 kbps,752 kbps

§ Number of segments pushed: 0, 1, 4, 9

§ Bandwidth: 200 kbps, 560 kbps, 880 kbps

§ Round trip time: 20 milliseconds, 300 milliseconds, 500 milliseconds

§ The bandwidth is carefully capped to make quality switch reflect the streaming throughput

11



Experimental Results

§ Request overhead is caused by two dimensions
§ Request number
§ Round trip time

§ Playback bandwidth is defined as the effective bandwidth to deliver video payload
§ Increasing k substantially improves the playback bandwidth

12

 0

 200

 400

 600

 800

 1000

k=0 k=1 k=4 k=9

Av
g.

 B
it 

R
at

e 
(k

bp
s)

20ms
300ms
500ms

Segment duration of 2s

 0

 200

 400

 600

 800

 1000

k=0 k=1 k=4 k=9

Av
g.

 B
it 

R
at

e 
(k

bp
s)

20ms
300ms
500ms

Segment duration of 1s



Beyond Playback Bandwidth

§ Diminishing marginal returns with the increasing number of segments pushed

§ Network adaptability is not improved with reduced segment duration

§ Over-push problem
§ User may decide not to continue watching a video after checking the first few seconds

13



Adaptive Push 



Adaptive-push Design

§ Adaptive-push features dynamically scaling the number of segments pushed in a video 
session

§ A small k is selected for the first push cycle to alleviate over-push problem
§ A number of users stop watching the videos after checking the first few seconds

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

User watching portion



Adaptive-push Design (Cont.)

§ The number of segments pushed is increased in various rates
§ When k is small, a high increment rate is preferred to improve the playback bandwidth

§ When k is large, a low increment rate or non-increment is more appropriate due to the diminishing 
playback bandwidth improvement

§ The number of segments pushed is constraint by current buffer status
§ Long buffer length more efficiently absorbs network fluctuations

16



Implementation

§ The push directive is carried in the HTTP request header
§ PushDirective: k

§ Jetty HTTP/2 server

§ Jetty project

§ Video player: dash.js
§ Dynamically determined k

§ tc is used to manipulate bandwidth and RTT 

17



Evaluation



Evaluation 

§ Same experimental parameters as those in k-push analysis

§ Additional adaptive-push schemes
§ Aggressive/moderate/conservative bandwidth prediction (880/415/49 kbps)

§ Two increment rates: 2k, k+1
§ Increment rate is decreased if the playback bandwidth improvement is detected less than 10%

§ Increment of k is stopped if the playback bandwidth improvement is detected less than 2%

§ Evaluate playback bandwidth, network adaptability, and over-pushed content

19



Playback Bandwidth

§ Progressive download the experimental video
§ Playback bandwidth is derived by dividing the overall downloaded segment size by the time consumed

§ Adaptive-push outperforms regular HTTP/1.1 streaming, approaching k-push

20

 0

 100

 200

 300

 400

 500

 600

 700

 800

no-push 9-push a-push-agg a-push-mod a-push-con

Pl
ay

ba
ck

 B
an

dw
id

th
 (k

bp
s) 20ms

300ms
500ms

Bandwidth

560 kbps actual bandwidth

 0

 200

 400

 600

 800

 1000

 1200

no-push 9-push a-push-agg a-push-mod a-push-con

Pl
ay

ba
ck

 B
an

dw
id

th
 (k

bp
s) 20ms

300ms
500ms

Bandwidth

880 kbps actual bandwidth



K Variation

§ Two increment rates are observed in the figures
§ K is always low if small RTT is observed, which means little playback bandwidth 

improvement when increasing k

§ Fluctuations occur when a large k is desired but the buffer length is low

21

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100  120  140

Pu
sh

 N
um

be
r k

Video Progress (s)

20ms-con
20ms-mod
20ms-agg

300ms-con
300ms-mod
300ms-agg
500ms-con

500ms-mod
500ms-agg

560 kbps actual bandwidth 880 kbps actual bandwidth

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100  120  140

Pu
sh

 N
um

be
r k

Video Progress (s)

20ms-con
20ms-mod
20ms-agg

300ms-con
300ms-mod
300ms-agg
500ms-con

500ms-mod
500ms-agg



Network Adaptability

§ Experimental parameters
§ Length: 5 minutes
§ buffer length: 30 seconds
§ Network condition varies every 30 seconds

§ Bandwidth: 480 kbps, 640 kbps, 800 kbps
§ RTT: 20 ms, 300 ms, 500 ms

22

Results



Over-pushed Simulation

§ Apple HLS trace collected at client side 
from Vuclip

§ 07/15/2015 ~ 08/31/2015

§ ~ 12 million video sessions

23

§ Simulator implemented in perl
§ Requests are sent only if previous 

downloaded segments are watched

§ Requested bitrate is determined by the 
measured playback bandwidth of last 
push cycle



Over-pushed Content

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18

C
D

F

Over-pushed Video Length (s)

20ms-con
20ms-mod
20ms-agg

500ms-con
500ms-mod
500ms-agg

no-push
k-push

540 kbps actual bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

C
D

F

Over-pushed Video Length (s)

20ms-con
20ms-mod
20ms-agg

500ms-con
500ms-mod
500ms-agg

no-push
k-push

880 kbps actual bandwidth



25

Dynamic Scaling of 
Number of Segments 

Pushed

Good Trade off 
between K-push and 

HTTP 1.1

Evaluated adaptive 
push

Adaptive PushEvaluated K-Push

diminishing returns, 
network adaptability, 

and the over-push 
problem

1 2 3

Conclusion



Questions ?


