

Evaluating and Improving Push based Video Streaming with HTTP/2 Mengbai Xiao¹, Vishy Swaminathan², Sheng Wei^{2,3}, Songqing Chen¹ ¹George Mason Universty, ²Adobe Systems, ³University of Nebraska-Lincoln

HTTP Streaming

NETFLIX

1000

HTTP Streaming

Downgraded Throughput

- HTTP streaming is build upon TCP
 - Sawtooth pattern traffic

- Short segment duration
 - live latency
 - High network adaptability
 - User abandonment behaviors lead to less waste of network resources
 - request explosion

Video Streaming enhanced by HTTP/2

HTTP Streaming Users

~4 руб.) или 7515 (~27 ру<mark>б.) для РФ или 3601 (~8</mark>

"Goal"

1:0

Playback

Live Event

Server Push Mechanism and k-push

- The server push mechanism is proposed in HTTP/2
 - HTTP servers speculatively push back HTTP responses that the client does not request yet
- K-push is a solution to relieve the request explosion problem
 - One request for k+1 segments

- More practical than the pipeline solution
 - Less requests are delivered via network and are processed on servers
 - The knowledge of future segment URLs are not required

Analyze K-Push

Adaptive Push

KAN

Evaluate

K-push Model

- K-push description
 - A push cycle consists of a HTTP request and k+1 HTTP responses
 - The lead segment of a push cycle is the first segment transmitted
 - Lead segment implies the bit rate level selected for the push cycle

Verification

- Experimental parameters
 - Video length: 120s
 - Video qualities: 49 kbps, 217 kbps, 504 kbps, 752 kbps
 - Number of segments pushed: 0, 1, 4, 9
 - Bandwidth: 200 kbps, 560 kbps, 880 kbps
 - Round trip time: 20 milliseconds, 300 milliseconds, 500 milliseconds
- The bandwidth is carefully capped to make quality switch reflect the streaming throughput

Experimental Results

- Request overhead is caused by two dimensions
 - Request number
 - Round trip time

- Playback bandwidth is defined as the effective bandwidth to deliver video payload
 - Increasing k substantially improves the playback bandwidth

Beyond Playback Bandwidth

- Diminishing marginal returns with the increasing number of segments pushed
- Network adaptability is not improved with reduced segment duration
- Over-push problem
 - User may decide not to continue watching a video after checking the first few seconds

Adaptive Push

Adaptive-push Design

Adaptive-push features dynamically scaling the number of segments pushed in a video session

- A small k is selected for the first push cycle to alleviate over-push problem
 - A number of users stop watching the videos after checking the first few seconds

Adaptive-push Design (Cont.)

- The number of segments pushed is increased in various rates
 - When k is small, a high increment rate is preferred to improve the playback bandwidth
 - When k is large, a low increment rate or non-increment is more appropriate due to the diminishing playback bandwidth improvement

- The number of segments pushed is constraint by current buffer status
 - Long buffer length more efficiently absorbs network fluctuations

$$(k+1)(\frac{bD}{B}-D) < L$$

Implementation

The push directive is carried in the HTTP request header

- PushDirective: k
- Jetty HTTP/2 server
 - Jetty project
- Video player: dash.js
 - Dynamically determined k
- tc is used to manipulate bandwidth and RTT

Evaluation

Evaluation

- Same experimental parameters as those in k-push analysis
- Additional adaptive-push schemes
 - Aggressive/moderate/conservative bandwidth prediction (880/415/49kbps)
 - Two increment rates: 2k, k+1
 - Increment rate is decreased if the playback bandwidth improvement is detected less than 10%
 - Increment of k is stopped if the playback bandwidth improvement is detected less than 2%

• Evaluate playback bandwidth, network adaptability, and over-pushed content

Playback Bandwidth

- Progressive download the experimental video
 - Playback bandwidth is derived by dividing the overall downloaded segment size by the time consumed

20

Adaptive-push outperforms regular HTTP/1.1 streaming, approaching k-push

K Variation

- Two increment rates are observed in the figures
- K is always low if small RTT is observed, which means little playback bandwidth improvement when increasing k
- Fluctuations occur when a large k is desired but the buffer length is low

Network Adaptability

- Experimental parameters
 - Length: 5 minutes
 - buffer length: 30 seconds
 - Network condition varies every 30 seconds
 - Bandwidth: 480 kbps, 640 kbps, 800 kbps
 - RTT: 20 ms, 300 ms, 500 ms

Results

	Buffer Length (s)	
	E	δ
no-push	29.08	1.69
9-push	16.46	10.34
a-push-con	23.55	7.90

Over-pushed Simulation

- Apple HLS trace collected at client side from Vuclip
 - 07/15/2015 ~ 08/31/2015
 - ~ 12 million video sessions

- Simulator implemented in perl
 - Requests are sent only if previous downloaded segments are watched
 - Requested bitrate is determined by the measured playback bandwidth of last push cycle

Over-pushed Content

Evaluated K-Push

1

diminishing returns, network adaptability, and the over-push problem

Adaptive Push

Dynamic Scaling of Number of Segments Pushed

Evaluated adaptive push

3

Good Trade off between K-push and HTTP 1.1

Conclusion

25

Adobe

Questions ?

