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Downgraded Throughput

§ HTTP streaming is build upon TCP
§ Sawtooth pattern traffic

§ Short segment duration 
§ live latency 

§ High network adaptability

§ User abandonment behaviors lead to less waste of 

network resources

§ request explosion
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Video Streaming enhanced by HTTP/2
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Cable TV Users

HTTP Streaming Users

1:0 “Goal”

2080 × 2080 - logo-kid.com 



K-Push
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Demo
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Server Push Mechanism and k-push

§ The server push mechanism is proposed in HTTP/2
§ HTTP servers speculatively push back HTTP responses that the client does not request yet

§ K-push is a solution to relieve the request explosion problem
§ One request for k+1 segments

§ More practical than the pipeline solution
§ Less requests are delivered via network and 

are processed on servers

§ The knowledge of future segment URLs are not required
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K-push Model

§ K-push description
§ A push cycle consists of a HTTP request and k+1 HTTP responses

§ The lead segment of a push cycle is the first segment transmitted 
§ Lead segment implies the bit rate level selected for the push cycle
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Verification

§ Experimental parameters
§ Video length: 120s

§ Video qualities: 49 kbps, 217 kbps, 504 kbps,752 kbps

§ Number of segments pushed: 0, 1, 4, 9

§ Bandwidth: 200 kbps, 560 kbps, 880 kbps

§ Round trip time: 20 milliseconds, 300 milliseconds, 500 milliseconds

§ The bandwidth is carefully capped to make quality switch reflect the streaming throughput
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Experimental Results

§ Request overhead is caused by two dimensions
§ Request number
§ Round trip time

§ Playback bandwidth is defined as the effective bandwidth to deliver video payload
§ Increasing k substantially improves the playback bandwidth
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Beyond Playback Bandwidth

§ Diminishing marginal returns with the increasing number of segments pushed

§ Network adaptability is not improved with reduced segment duration

§ Over-push problem
§ User may decide not to continue watching a video after checking the first few seconds
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Adaptive Push 



Adaptive-push Design

§ Adaptive-push features dynamically scaling the number of segments pushed in a video 
session

§ A small k is selected for the first push cycle to alleviate over-push problem
§ A number of users stop watching the videos after checking the first few seconds
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Adaptive-push Design (Cont.)

§ The number of segments pushed is increased in various rates
§ When k is small, a high increment rate is preferred to improve the playback bandwidth

§ When k is large, a low increment rate or non-increment is more appropriate due to the diminishing 
playback bandwidth improvement

§ The number of segments pushed is constraint by current buffer status
§ Long buffer length more efficiently absorbs network fluctuations
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Implementation

§ The push directive is carried in the HTTP request header
§ PushDirective: k

§ Jetty HTTP/2 server

§ Jetty project

§ Video player: dash.js
§ Dynamically determined k

§ tc is used to manipulate bandwidth and RTT 
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Evaluation 

§ Same experimental parameters as those in k-push analysis

§ Additional adaptive-push schemes
§ Aggressive/moderate/conservative bandwidth prediction (880/415/49 kbps)

§ Two increment rates: 2k, k+1
§ Increment rate is decreased if the playback bandwidth improvement is detected less than 10%

§ Increment of k is stopped if the playback bandwidth improvement is detected less than 2%

§ Evaluate playback bandwidth, network adaptability, and over-pushed content
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Playback Bandwidth

§ Progressive download the experimental video
§ Playback bandwidth is derived by dividing the overall downloaded segment size by the time consumed

§ Adaptive-push outperforms regular HTTP/1.1 streaming, approaching k-push

20

 0

 100

 200

 300

 400

 500

 600

 700

 800

no-push 9-push a-push-agg a-push-mod a-push-con

Pl
ay

ba
ck

 B
an

dw
id

th
 (k

bp
s) 20ms

300ms
500ms

Bandwidth

560 kbps actual bandwidth

 0

 200

 400

 600

 800

 1000

 1200

no-push 9-push a-push-agg a-push-mod a-push-con

Pl
ay

ba
ck

 B
an

dw
id

th
 (k

bp
s) 20ms

300ms
500ms

Bandwidth

880 kbps actual bandwidth



K Variation

§ Two increment rates are observed in the figures
§ K is always low if small RTT is observed, which means little playback bandwidth 

improvement when increasing k

§ Fluctuations occur when a large k is desired but the buffer length is low
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Network Adaptability

§ Experimental parameters
§ Length: 5 minutes
§ buffer length: 30 seconds
§ Network condition varies every 30 seconds

§ Bandwidth: 480 kbps, 640 kbps, 800 kbps
§ RTT: 20 ms, 300 ms, 500 ms

22

Results



Over-pushed Simulation

§ Apple HLS trace collected at client side 
from Vuclip

§ 07/15/2015 ~ 08/31/2015

§ ~ 12 million video sessions
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§ Simulator implemented in perl
§ Requests are sent only if previous 

downloaded segments are watched

§ Requested bitrate is determined by the 
measured playback bandwidth of last 
push cycle



Over-pushed Content
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Dynamic Scaling of 
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